УДК 535.317.1.001.3

В.А. Банах, Б.Н. Чен

КАЧЕСТВО ИЗОБРАЖЕНИЯ КОГЕРЕНТНО ОСВЕЩЕННЫХ ОБЪЕКТОВ В СЛУЧАЙНО-НЕОДНОРОДНОЙ СРЕДЕ

Анализируется влияние корреляции встречных волн на качество изображения объектов, наблюдаемых через случайно-неоднородную среду. Показано, что в случае согласования приемопередающих апертур когерентного источника и телескопа при учете корреляции волн, подсвечивающей объект и отраженной от него, качество изображения <точечного> объекта и разрешение изображения <двухточечного> объекта значительно возрастают.

Известно, что пространственно-временная неоднородность случайной среды приводит к искажениям изображения наблюдаемого объекта. Изображение размывается, границы его становятся нечеткими, что приводит к потере информации о мелкомасштабных деталях объекта.

Проблеме видения через случайно-неоднородные среды уделяется значительное внимание исследователей. Все работы, посвященные данной тематике, условно можно разделить на три блока. Первый блок [1] связан с длинноэкспозиционными изображениями самосветящихся или подсвечиваемых некогерентным оптическим источником объектов. Теория этих работ основывается на представлении пространственного спектра изображения в виде произведения пространственных спектров объекта и длинноэкспозиционной передаточной функции системы <телескоп + случайно-неоднородная среда>. Задача анализа изображения объекта в этом случае сводится к нахождению длинноэкспозиционной передаточной функции вышеозначенной системы <телескоп + случайно-неоднородная среда>.

Второй крупный блок работ связан с короткоэкспозиционными изображениями самосветящихся или подсвечиваемых некогерентным оптическим источником объектов. Методологическая основа прикладных работ этого блока базируется на методе Лабейри [2, 3].

Следующий блок работ можно объединить под общим названием <теория когерентных изображений> [4], под которой понимается разнообразный круг вопросов, связанных с формированием и обработкой изображений объектов, освещаемых когерентным оптическим источником. Одним из аспектов этого направления является исследование когерентных изображений в таких ситуациях, когда излучение, падающее на объект, коррелирует с рассеянным вследствие прохождения оптической волной одних и тех же неоднородностей среды в прямом и обратном направлениях [5–10]. Изучению влияния корреляции встречных волн на <качество> когерентных изображений в турбулентной атмосфере и посвящена данная статья.

Рис. 1. Геометрическая схема формирования изображения

Банах В.А., Чен Б.Н.

Рассмотрим, как показано на рис. 1, объект, амплитудный коэффициент отражения которого описывается функцией $O(\rho', \mathbf{r})$. Здесь $\rho', \mathbf{r} - двумерные векторы. Данный объект под$ свечивается когерентным оптическим источником, распределение поля которого в плоскости $излучающей апертуры описывается функцией <math>U_0(\mathbf{t})$ и отстоящим от наблюдаемого объекта $O(\rho', \mathbf{r})$ на расстояние L. Объект $O(\rho', \mathbf{r})$ наблюдается через удаленный от объекта на расстояние L телескоп, амплитудный коэффициент пропускания приемной линзы которого описывается функцией $T(\rho)$.

Определим качество изображения объекта функционалом [10]:

$$\Theta(l) = \int d^2 \,\omega \omega^2 \, \left| N(l, \,\omega) \right|^2 / \int d^2 \,\omega \, \left| N(l, \,\omega) \right|^2. \tag{1}$$

Здесь $N(l, \omega)$ – нормированный пространственный спектр средней интенсивности оптической волны в плоскости l за приемной линзой телескопа

$$N(l, \boldsymbol{\omega}) = S(l, \boldsymbol{\omega}) / S(l, 0),$$

где $S(l, \omega) = \int d^2 \rho'' \langle I(l, \rho'') \rangle \exp(i\omega\rho'')$ – пространственный спектр средней интенсивности; ω – пространственная частота. Средняя интенсивность $\langle I(l, \rho'') \rangle$ в плоскости *l* за приемной линзой

телескопа равна [11]

$$< I(l, \rho'') > = \left(\frac{k}{2\pi l}\right)^{2} \int d^{2} t_{1,2} U_{0}(\mathbf{t}_{1}) U_{0}^{*}(\mathbf{t}_{2}) \int d^{2} \rho_{1,2}' \int d^{2} r_{1,2} < O(\rho_{1}', \mathbf{r}_{1}) O^{*}(\rho_{2}', \mathbf{r}_{2}) > \int d^{2} \rho_{1,2} T(\rho_{1}) T(\rho_{2}) \times \times < G_{np}(x_{0}; \rho_{1}', \mathbf{t}_{1}) G_{np}^{*}(x, x_{0}; \rho_{2}', \mathbf{t}_{2}) G_{o6}(x_{0}, x; \rho_{1}, \mathbf{r}_{1}) G_{o6}^{*}(x_{0}, x; \rho_{2}, \mathbf{r}_{2}) > \exp\left[\frac{ik}{2l} \left(1 - \frac{l}{F_{i}}\right) (\rho_{1}^{2} - \rho_{2}^{2}) - \frac{ik}{l} (\rho_{1} - \rho_{2}) \rho''\right], (2)$$

где $G_{np}(x, x_0; \mathbf{\rho}, \mathbf{t})$ и $G_{o6}(x_0, x; \mathbf{\rho}, \mathbf{r})$ – функции Грина на трассах соответственно <источник–объект> и <объект–телескоп>; F_t – фокусное расстояние приемной линзы телескопа; $k = 2\pi/\lambda$ – волновое число; x_0 определяет положение плоскости оптического источника и телескопа; x – положение плоскости объекта.

В дальнейшем будем рассматривать в качестве среды турбулентную атмосферу с колмогоровским спектром при реализации на трассе условий сильных флуктуаций интенсивности [11]. Оптический источник зададим в виде гауссова пучка шириной 2 *a* и радиусом кривизны волнового фронта *F*. Для функции $T(\rho)$ воспользуемся гауссовой аппроксимацией с эффективным радиусом *a*_i.

Известно [11], что в области сильных флуктуаций интенсивности можно записать

$$\langle I(l, \rho'') \rangle = \langle I(l, \rho'') \rangle_1 + \langle I(l, \rho'') \rangle_2,$$
(3)

 $S(l, \omega) = S_1(l, \omega) + S_2(l, \omega).$

Первое слагаемое в выражении (3) описывает влияние среды на распространение оптической волны, когда подсвечивающая объект и отраженная от объекта волны проходят по разным неоднородностям среды, т.е. некоррелированы. Второе слагаемое в (3) отвечает за корреляцию этих волн. Наличие этого слагаемого определяет специфику формирования когерентных изображений подсвечивающих объектов по сравнению с изображениями самосветящихся когерентных источников.

Влияние второго слагаемого в формулах (3) на качество изображения удобно рассмотреть на примере объекта <точечных> размеров. Пространственный спектр точечного объекта $S_0(l, \omega)$ равняется постоянной величине, а среда и дифракция на апертурах оптического источника и приемного телескопа играют роль высокочастотных фильтров. Поэтому пространственный спектр изображения объекта получается из пространственного спектра объекта как результат фильтрации его высокочастотных компонент.

Для точечного объекта имеем

Качество изображения когерентно освещенных объектов

 $O(\mathbf{\rho}, \mathbf{r}) = 4\pi/k^2 \,\delta(\mathbf{r}) \,\delta(\mathbf{\rho} - \mathbf{r}),$

где $\delta(\mathbf{r})$ – дельта-функция Дирака. Воспользовавшись (4) в (2) для слагаемого $S_1(l, \omega)$ в (3), получим

$$S_{1}(l, \omega) = \text{const} \left(g^{2} + 2 p \right)^{-1} \exp \left[-\omega^{2} / \omega_{0}^{2} \left(1 + \Omega_{t}^{2} Q^{2} + 2 p \Omega_{t} / \Omega \right) \right],$$
(5)

где $\omega_0 = 2 a_t k / l; g^2 = 1 + \Omega^2 (1 - L/F)^2; Q = 1 + L(1/l - 1/F_t); p = 2\Omega/(3g); \Omega = ka^2/L, \Omega_t = ka_t^2/L - чис$ $ла Френеля излучающей апертуры и телескопа соответственно; <math>q = 0.82 \beta_0^{-12/5}; \beta_0^2 = 0.31 C_{\varepsilon}^2 k^{7/6}L^{11/6}$ параметр, характеризующий турбулентные условия распространения на трассе; $C_{\varepsilon}^2 -$ структурная характеристика флуктуаций диэлектрической проницаемости среды. В рассматриваемом случае сильных флуктуаций интенсивности параметр β_0^2 принимает значения, существенно превышающие единицу.

Из выражения (5) следует, что наилучшее изображение точечного объекта в телескопе получается в плоскости *l**, которая определяется из формулы тонкой линзы [12]

$$Q = 1 + L/l^* - L/F_t = 0. (6)$$

Амплитуда слагаемого $S_1(l, \omega)$ пропорциональна $\beta_0^{-12/5}$, характерный масштаб его убывания порядка

$$\omega_1 \sim \omega_0 (1 + Q^2 + 2 p \Omega_t / \Omega)^{-1/2}$$

Для слагаемого $S_2(l, \omega)$ в (3) в случае точечного объекта имеем

$$S_{2}(l, \omega) = \operatorname{const} A B \left[\Omega^{2} \left(1 - \frac{L}{F} \right)^{2} + A \Omega \Omega_{t} \left(1 - \frac{L}{F} \right)^{2} p^{2} + B^{2} \right]^{-1} \exp \left\{ -\frac{\omega^{2}}{\omega_{0}^{2}} \left[C + A B \Omega_{t}^{2} Q^{2} - B p^{2} \Omega_{t} \Omega^{-1} \left[\Omega^{2} \left(1 - \frac{L}{F} \right)^{2} + A \Omega \Omega_{t} \left(1 - \frac{L}{F} \right)^{2} p^{2} + B^{2} \right]^{-1} \left[1 + A \Omega \Omega_{t} \left(1 - \frac{L}{F} \right) Q \right]^{2} \right] \right\},$$
(7)

где введены обозначения

$$A = [1 + p(1 + \Omega_t / \Omega)]^{-1}; B = 1 + p; C = 1 + p \Omega_t / \Omega.$$

Из выражения (7) следует, что амплитуда слагаемого $S_2(l, \omega)$ пропорциональна $\beta_0^{-24/5}$, а характерный масштаб его убывания порядка $\omega_2 \sim \omega_0$. Таким образом, хотя амплитуда слагаемого S_2 значительно меньше амплитуды слагаемого S_1 при $\beta_0^2 \gg 1$, его характерный масштаб убывания существенно больше характерного масштаба убывания слагаемого S_1 , $(\omega_2/\omega_1 \sim (1 + \Omega_I^2 Q^2 + 2 p \Omega/\Omega)^{1/2} \gg 1)$.

Поведение слагаемых S_1 и S_2 показано на рис. 2, где N_0 обозначает нормированный пространственный спектр точечного объекта; $N_1^i = S_1(l^*, \omega)/S_1(l, 0)$ и $N_1^f = S_1(F_i, \omega)/S_1(l, 0)$ описывают пространственные спектры изображения этого же объекта без учета корреляции встречных волн в плоскости резкого изображения $(l = l^*)$ и в фокальной плоскости телескопа $(l = F_i)$ соответсвенно; $N_2^f = S_2(F_i, \omega) / S_1(l, 0)$ показывает относительный вклад второго слагаемого $S_2(l, \omega)$ в пространственный спектр изображения точечного объекта в фокальной плоскости телескопа.

В полном соответствии с тем, что размер изображения в плоскости l^* минимален, спектр $S_1(l^*, \omega)$ шире, чем $S_1(F_i, \omega)$. В то же время, как видно из рис. 2, слагаемое $S_2(F_i, \omega)$ содержит информацию о высокочастотной части пространственного спектра точечного объекта, которая отфильтровывается неоднородной средой в отсутствие корреляции встречных волн. Следовательно, учет слагаемого S_2 должен приводить к улучшению качества изображения объекта.

1524

Рис. 2. Схематическое поведение слагаемых S_1 и S_2

Воспользовавшись определением (1) и выражениями (5), (7), вычислим функционал $\theta_1(l^*)$, который характеризует качество изображения точечного объекта в плоскости резкого изображения без учета корреляции встречных волн, и функционал $\theta(F_t)$, который характеризует качество изображения того же объекта в фокальной плоскости приемной линзы телескопа с учетом корреляции прямой и обратной волн. Определим величину *M* как отношение $\theta(F_t)$ к $\theta_1(l^*)$. Ясно, что значение M > 1 соответствует улучшению, а M < 1 ухудшению качества изображения.

На рис. 3 представлены зависимости величины M от числа Френеля освещающего точечный объект когерентного источника при различных значениях числа Френеля приемной линзы телескопа. Параметр β_0^2 равен 50.

Из рис. З следует, что улучшение качества изображения, согласно критерию (1), наблюдается, когда апертуры когерентного источника и приемной линзы телескопа имеют одинаковые размеры ($\Omega = \Omega_i$). В этом случае когерентное слагаемое S_2 дает вклад, соизмеримый со слагаемым S_1 . Таким образом, корреляция встречных волн в условиях сильных флуктуаций интенсивности при наблюдении объекта в фокальной плоскости может приводить к выигрышу по сравнению с изображением в сопряженной плоскости l^* . Если условие согласования апертур не соблюдается ($\Omega \gg \Omega_i$ или $\Omega \ll \Omega_i$), то улучшения качества изображения не происходит.

Рис. 3. Зависимости величины $M=\theta(F_t)/\theta_1(l^*)$ для точечного объекта от числа Френеля когерентного источника. Кривая $l - \Omega_t = 0, 1; 2 - \Omega_t = 1; 3 - \Omega_t = 10; 4 - \Omega_t = 100$

Качество изображения когерентно освещенных объектов

Данный результат имеет наглядное физическое объяснение и впервые был показан на примере вычисления средней интенсивности изображения в [13]. Если принять во внимание [14] то обстоятельство, что лучи оказываются когерентными (коррелированными) между собой вследствие дальних корреляций только в области, ограниченной размерами выходной апертуры, то становится ясно, что телескоп с меньшими, чем 2 *a*, размерами собирает не все когерентные лучи, а использование приемной линзы телескопа больших размеров приводит к относительному уменьшению когерентной составляющей рассеянного излучения < $I(l, \rho'')$ >₂ в выражении (3) по сравнению с возрастающим вкладом некогерентной компоненты < $I(l, \rho'')$ >₁.

Рассмотрим, как скажется корреляция встречных волн на разрешении объектов, наблюдаемых в турбулентной атмосфере в когерентном свете. Представим функцию $O(\rho, \mathbf{r})$ для <двухточечного> объекта в следующем виде:

$$O(\mathbf{\rho}, \mathbf{r}) = (2\mathbf{p}/k^2) \left[\delta(\mathbf{r} - \mathbf{r}_0) + \delta(\mathbf{r} + \mathbf{r}_0)\right] \delta(\mathbf{r} - \mathbf{r}_0),\tag{8}$$

где 2 **r**₀ – расстояние между двумя точечными объектами.

Подставив (8) в (2), несложно получить выражение для распределения интенсивности изображения двухточечного объекта. На рис. 4 и 5 представлены результаты расчета на основании этого выражения зависимости распределения интенсивности двухточечного объекта в сопряженной плоскости и в фокальной плоскости приемной линзы телескопа при различных расстояниях между точечными объектами. По оси абсцисс на рис. 4 и 5 отложено нормированное на *l/ka*, расстояние в поперечной к оптической оси телескопа плоскости.

Рис. 4. Распределение интенсивности изображения двухточечного объекта при $r_0/\rho_n = 150, \Omega = 10, \Omega_r = 10, \beta_0^2 = 50$

Рис. 5. Распределение интенсивности изображения двухточечного объекта при $r_0/\rho_n = 50$, $\Omega = 10$, $\Omega_t = 10$, $\beta_0^2 = 50$

Рассмотрим изображение двухточечного объекта в сопряженной (штриховая кривая на рис. 4 и 5) и в фокальной (сплошная кривая без пиков на рис. 4 и 5) плоскостях без учета корреляции встречных волн. Из рисунков видно, что по мере уменьшения расстояния между двумя точечными объектами их разрешение в изображении падает вплоть до того, что они становятся полностью неразрешимыми.

Рассмотрим изображение двухточечного объекта в фокальной плоскости, но с учетом корреляции встречных волн. Из рис. 4 и 5 видно (сплошная кривая с пиками), что в этом случае разрешение двухточечного объекта повышается (рис. 4) и не исчезает даже тогда, когда расстояние между двумя точечными объектами уменьшается настолько, что их изображения в отсутствие корреляции встречных волн или при их наблюдении в сопряженной плоскости не разрешаются приемной системой.

Для количественной оценки повышения разрешающей способности телескопа при наблюдении двухточечного объекта за счет корреляции встречных волн введем функцию <видности> изображения по формуле

$$V = (I_{\max} - I_{\min}) / (I_{\max} + I_{\min})$$
,

Банах В.А., Чен Б.Н.

1526

где через I_{max} обозначено максимальное значение интенсивности в изображении, а через I_{min} – значение интенсивности при $\rho'' = 0$.

На рис. 6 представлены зависимости видности изображения двухточечного объекта при различных способах наблюдения. По оси абсцисс отложено нормированное на ρ_n расстояние между двумя точечными объектами. Здесь ρ_n – радиус когерентности поля плоской волны на трассе длиной *L*, который выражается через ранее введенные параметры следующим образом:

$$\rho_n^2 = L / (1,22 \ k \beta_0^{12/5})$$
.

Из рис. 6 видно, что разрешение изображения двухточечного объекта за счет корреляции встречных волн при условии согласования размеров приемной и передающей апертур существенно повышается.

Рис. 6. Видность изображения двухточечного объекта $\Omega = 10$, $\Omega_t = 10$: 1 – видность изображения двухточечного объекта в плоскости резкого изображения при $\beta_0^2 = 0$; 2, 3 – видность изображения двухточечного объекта в фокальной плоскости при $\beta_0^2 = 50$; 2 – с учетом корреляции встречных волн; 3 – без учета корреляции встречных волн; 4 – уровень разрешения по критерию Рэлея

Таким образом, корреляция встречных волн может приводить к существенному повышению качества изображения и разрешающей способности телескопа при когерентной подсветке объекта наблюдения.

- 1. Гудмен Дж. Статистическая оптика. М.: Мир, 1988. 528 с.
- 2. L a b e y r i e A . // Astron. and Astrophys. 1970. V. 6. P. 85.
- 3. Токовинин А.А. Звездные интерферометры. М.: Наука, 1988.
- 4. Бакут П.А., Мандросов В.И., Матвеев И.Н., Устинов Н.Д. Теория когерентных изображений. М.: Радио и связь, 1987. 264 с.
- 5. Mavroidis T., Dainty J.C., Northcott M.J.// J. Opt. Soc. Am. A. 1990. V. 7. N 3. P. 348-355.
- 6. Agrovskii B.S., Bogaturov A.N., Gurvich A.S., Kireev S.V., Myakinin V.A. // J. Opt. Soc. Am. A. 1991. V. 8. №7. P. 1142–1147.
- 7. Solomon C.J., Lane R.G., Mavroidis T., Dainty J.C. // Journal of modern optics. 1991. V. 38. №11. P. 1993-2008.
- 8. Mavroidis T., Solomon C.J., Dainty J.C.// J. Opt. Soc. Am. A. 1991. V. 8. №7. P. 1003–1013.
- 9. Mazar R., Bronshtein A., Kodner L. // Proc. SPIE Atmospheric Propagation and Remote Sensing II. 1993. V. 1968. P. 249–257.
- 10. B o g a t u r o v A. N. // Proc. SPIE Atmospheric Propagation and Remote Sensing II. 1993. V. 1968. P. 270–281.
- 11.3 у е в В.Е., Банах В.А., Покасов В.В. Оптика турбулентной атмосферы. Л.: Гидрометеоиздат, 1988. 272 с.
- 12. Борн М., Вольф Э. Основы оптики. М.: Наука, 1973. 720 с.
- 13. Банах В. А. // Изв. вузов. Радиофизика. 1986. Т. 29. №12. С. 1507–1509.
- 14. Кравцов Ю.А., Саичев А.И. Эффекты двукратного прохождения волн в случайно-неоднородных средах. М. 1984. (Препринт N 20(382)/ Институт радиотехники и электроники АН СССР).

Качество изображения когерентно освещенных объектов

Институт оптики атмосферы СО РАН, г. Томск

Поступила в редакцию 7 июля 1994 г.

V.A. Banakh, B.N. Chen. Quality of Imaging of Coherently Illuminated Objects in Random Medium. The effect of correlation of counter waves on a quality of objects image viewed through a randomly-inhomogeneous medium is analyzed in the paper. It is shown that correlation of the wave incident on the viewed object and the reflected one causes a betterment of quality of the image of a point object as well as an impovement of resolution of the image of two-point object. The effect becomes maximum in the case of proximity of the sizes of the transmissing aperture and the telescope object-lens.