РАССЕЯНИЕ И ПЕРЕНОС ОПТИЧЕСКИХ ВОЛН В АТМОСФЕРЕ И ОКЕАНЕ

УДК 551. 510. 42

Д.Н. Ромашов, Р.Ф. Рахимов

ОПРЕДЕЛЕНИЕ ОРИЕНТАЦИИ ОСЕСИММЕТРИЧНЫХ ВЫТЯНУТЫХ ЧАСТИЦ ПО ДАННЫМ ПОЛЯРИЗАЦИОННОГО ЗОНДИРОВАНИЯ

Анализируется влияние фактора преимущественной ориентации ОВЧ на формирование МОР. На основе анализа соотношений между элементами МОР показана возможность диагностики угла и степени преимущественной ориентации осесимметричных вытянутых частиц.

1. Матрица обратного светорассеяния (МОР) ансамбля осесимметричных вытянутых частиц (ОВЧ)

Перспективность метода поляризационного зондирования атмосферы прежде всего связана с возможностью оптической индикации процессов возникновения и изменения состояния ориентации аэрозольных частиц с целью идентификации интенсивности направления воздушных потоков на различных высотах.

В [1, 2] на основе модельных оценок был рассмотрен вопрос о влиянии фактора преимущественной ориентации цилиндрических частиц на изменение состояния поляризации лидарного отклика (параметров Стокса). В настоящей статье эта тема продолжена в контексте влияния ориентации частиц на содержание МОР.

Рассмотрим ансамбль горизонтально ориентированных ОВЧ (иголки, сфероиды, эллипсоиды, гексагональные столбики), т.е. имеющих плоскость зеркальной симметрии, перпендикулярную оси симметрии, и равномерно ориентированных по углу вращения вокруг оси симметрии. Для конкретности изложения последующий анализ проведем для случая круговых цилиндров, хотя полученные результаты в большинстве случаев будут справедливы и для других перечисленных типов частиц.

Рассмотрим систему координат (*x*, *y*, *z*), (*r*, θ , φ), где ось *z* совпадает с направлением падающего излучения, а состояние поляризации падающего света задается в плоскости *хоz* или $\varphi = 0$. Ориентация частицы, то есть направление оси симметрии задается полярными углами (α , β) (рис. 1). Оси вытянутости частиц ориентированы в плоскости, ортогональной падающему излучению, т.е. $\beta = \pi/2$.

Геометрия рассеяния произвольно ориентированного кругового цилиндра

Определение ориентации осесимметричных вытянутых частиц

Пусть ориентация цилиндра с радиусом *r* и длиной *l* определяется углом α . Рассмотрим в качестве плоскости референции плоскость $\varphi = \alpha$. Известно [3, 4], что МОР **F**(α) относительно этой плоскости для ОВЧ при $\theta = \pi$ имеет вид

$$\mathbf{F}(r, l, \alpha) = \begin{pmatrix} A & B & 0 & 0 \\ B & A & 0 & 0 \\ 0 & 0 & C & -D \\ 0 & 0 & D & C \end{pmatrix},\tag{1}$$

где элементы A, B, C, D – функции только от r и l и от α не зависят.

Матрица обратного светорассеяния этой же частицы $Z(\alpha, r, l)$ относительно плоскости референции φ , равной 0, может быть получена из матрицы (1) с помощью преобразования [5]:

$$\mathbf{Z}(r, l, \alpha) = \mathbf{L}(-\alpha) \mathbf{F}(r, l, \alpha) \mathbf{L}(-\alpha);$$
⁽²⁾

аналогичное преобразование (с небольшой поправкой на знак угла) можно провести и для матрицы рассеяния вперед ($\theta = 0^{\circ}$):

$$\mathbf{S}(r, l, \alpha) = \mathbf{L}(\alpha) \, \mathbf{Y}(r, l, \alpha) \, \mathbf{L}(-\alpha), \tag{3}$$

где $L(-\alpha)$ – матрица преобразования параметров Стокса при вращении плоскости референции на угол α по часовой стрелке, если смотреть вдоль направления распространения волны:

$$\mathbf{L}(-\alpha) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos 2\alpha & -\sin 2\alpha & 0 \\ 0 & \sin 2\alpha & \cos 2\alpha & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix},$$

а матрица **Y**(r, l, α), аналогичная **F**(r, l, α), только для $\theta = 0$:

$$\mathbf{Y}(r, l, \alpha) = \begin{pmatrix} G & E & 0 & 0 \\ E & G & 0 & 0 \\ 0 & 0 & H & -T \\ 0 & 0 & T & H \end{pmatrix}$$

Используя (1) и (2), получим

$$\mathbf{Z}(r, l, \alpha) = \begin{pmatrix} A & B\cos 2\alpha & -B\sin 2\alpha & 0\\ B\cos 2\alpha & A\cos^{2}2\alpha - C\sin^{2}2\alpha & -\frac{(A+C)}{2}\sin 4\alpha & D\sin 2\alpha\\ B\sin 2\alpha & \frac{(A+C)}{2}\sin 4\alpha & C\cos^{2}2\alpha - A\sin^{2}2\alpha & -D\cos 2\alpha\\ 0 & D\sin 2\alpha & D\cos 2\alpha & C \end{pmatrix}.$$
 (4)

Рассмотрим монодисперсный ансамбль цилиндрических частиц, оси которых имеют преимущественную ориентацию α_0 . Пусть $f(\alpha, \alpha_0, k)$ – функция плотности распределения ориентаций осей частиц по углу α . Полная матрица обратного светорассеяния ансамбля объемно ориентированных вытянутых частиц относительно плоскости референции $\phi = 0$ может быть получена интегрированием по всем плоскостям α с весовой функцией $f(\alpha, \alpha_0, k)$.

$$\mathbf{P}(r, l, \alpha_0) = \int_0^{\pi} \mathbf{Z}(r, l, \alpha) f(\alpha, \alpha_0, k) \, d\alpha.$$
(5)

Ориентацию осей частиц по углу α определим через распределение Мизеса [6], функция плотности распределения которого записывается в виде

$$f(\alpha, \alpha_0, k) = \exp[k \cos 2(\alpha - \alpha_0)] / \pi I_0(k), \tag{6}$$

где $I_0(k)$ – модифицированная функция Бесселя первого рода и нулевого порядка. Распределение Мизеса одновершинно и симметрично относительно точки $\alpha_c = \alpha_0 \pmod{\pi}$. Чем больше k, 892 Ромашов Д.Н., Рахимов Р.Ф.

тем больше распределение Мизеса концентрируется вокруг моды. Функция плотности распределения в интервале ($\alpha_0 - \pi/2$, $\alpha_0 + \pi/2$) имеет две точки перегиба:

$$\alpha_{h} = \alpha_{0} \pm 1/2 \arccos \left(\frac{1}{2} k + \sqrt{1 + \frac{1}{4} k^{2}} \right).$$

Заметим, что для функции плотности нормального распределения $N(\mu, \sigma)$ точками перегиба являются $\alpha = \mu \pm \sigma$. Таким образом, $\alpha_k = \alpha_b - \alpha_0$ является мерой разброса ориентаций осей частиц около направления α_0 .

После интегрирования (5), используя (4) и (6) для полиориентированного ансамбля частиц, для элементов МОР $\mathbf{P}(r, l, \alpha_0)$ получим следующее выражение:

$$\begin{pmatrix} A & i_1 B \cos 2\alpha_0 & -i_1 B \sin 2\alpha_0 & 0\\ i_1 B \cos 2\alpha_0 & U + i_2 N \cos 4\alpha_0 & -i_2 N \sin 4\alpha_0 & i_1 D \sin 2\alpha_0\\ i_1 B \sin 2\alpha_0 & i_2 N \sin 4\alpha_0 & -U + i_2 N \cos 4\alpha_0 & -i_1 D \cos 2\alpha_0\\ 0 & i_1 D \sin 2\alpha_0 & i_1 D \cos 2\alpha_0 & C \end{pmatrix},$$
(7)

где $N = \frac{(A+C)}{2}$, $U = \frac{(A-C)}{2}$, $i_1(k) = \frac{I_1(k)}{I_0(k)}$, $i_2(k) = \frac{I_2(k)}{I_0(k)}$, I_0 , I_1 , I_2 -модифицированные функции

Бесселя первого рода соответственно нулевого, первого и второго порядка.

Все вышеприведенные рассуждения были сделаны для полиориентированного ансамбля вытянутых цилиндрических частиц с фиксированными размерами l и r. Для вытянутых частиц $l \gg r$ и поэтому физически оправдано предположение о том, что частицы данной формы, но разных размеров примерно одинаковым образом ориентируются в горизонтальных воздушных потоках, т.е. распределение частиц по размерам будет независимо от распределения осей частиц по углу α . В этом случае элементы МОР полидисперсного ансамбля обычно оцениваются усреднением по спектру размеров с весовой функцией g(r, l):

$$\overline{\mathbf{P}}(\alpha_0) = \int_{l_1}^{l_2} \int_{r_1}^{r_2} \mathbf{P}(r, l, \alpha) g(r, l) \, dl \, dr.$$
(8)

Таким образом, зависимость от α_0 будет той же самой, что и для монодисперсного ансамбля.

$$\overline{\mathbf{P}}(\alpha_0) = \begin{pmatrix} \overline{A} & i_1 \overline{B} \cos 2\alpha_0 & -i_1 \overline{B} \sin 2\alpha_0 & 0\\ i_1 \overline{B} \cos 2\alpha_0 & R + i_2 \overline{N} \cos 4\alpha_0 & -i_2 \overline{N} \sin 4\alpha_0 & i_1 \overline{D} \sin 2\alpha_0\\ i_1 \overline{B} \sin 2\alpha_0 & i_2 \overline{N} \sin 4\alpha_0 & -\overline{U} + i_2 M \cos 4\alpha_0 & -i_1 \overline{D} \cos 2\alpha_0\\ 0 & i_1 \overline{D} \sin 2\alpha_0 & i_1 \overline{D} \cos 2\alpha_0 & \overline{C} \end{pmatrix}.$$
(9)

где $\overline{N} = (\overline{A} + \overline{C})/2; \ \overline{U} = (\overline{A} - \overline{C})/2;$

$$\overline{\mathbf{S}}(\alpha_0) = \begin{pmatrix} \overline{G} & i_1 \overline{E} \cos 2\alpha_0 & -i_1 \overline{E} \sin 2\alpha_0 & 0\\ i_1 \overline{E} \cos 2\alpha_0 & K - i_2 W \cos 4\alpha_0 & i_2 W \sin 4\alpha_0 & -i_1 \overline{T} \sin 2\alpha_0\\ -i_1 \overline{E} \sin 2\alpha_0 & i_2 W \sin 4\alpha_0 & K + i_2 W \cos 4\alpha_0 & -i_1 \overline{T} \cos 2\alpha_0\\ 0 & i_1 \overline{T} \sin 2\alpha_0 & i_1 \overline{T} \cos 2\alpha_0 & \overline{H} \end{pmatrix},$$
(10)

где $K = (\overline{G} + \overline{H})/2$, $W = (\overline{H} - \overline{G})/2$.

В дальнейшем будем опускать знак усреднения над матрицами и ее элементами, подразумевая при этом полидисперсность ансамблей. Заметим, что

Определение ориентации осесимметричных вытянутых частиц

$$\lim_{k \to 0} i_{1,2}(k) = 0, \tag{11}$$

и распределение Мизеса становится равномерным, а МОР принимает вид диагональной матрицы:

$$\mathbf{P} = \begin{pmatrix} A & 0 & 0 & 0 \\ 0 & U & 0 & 0 \\ 0 & 0 & -U & 0 \\ 0 & 0 & 0 & C \end{pmatrix},\tag{12}$$

где U = (A - C) / 2, что согласуется с достаточно известным выводом, приведенным в [3].

2. Методика определения угла преимущественной ориентации и степени ориентированности ОВЧ

Из (9) получаем следующие расчетные соотношения между элементами МОР и параметрами распределения α_0 и k:

$$P_{11} - P_{22} = P_{44} - P_{33}; (13)$$

$$\operatorname{ctg2}\alpha_{0} = -\frac{P_{12}}{P_{13}}, \ \operatorname{ctg2}\alpha_{0} = -\frac{P_{34}}{P_{24}};$$
(14)

$$i_{2}(k) = \frac{(P_{22} + P_{33})}{(P_{11} + P_{44})\cos 4\alpha_{0}}; \ \alpha_{0} \neq \frac{\pi}{8}, \frac{3\pi}{8}, \frac{5\pi}{8}, \frac{7\pi}{8};$$
(15)

$$i_{2}(k) = \frac{2P_{32}}{(P_{11} + P_{44})\sin 4\alpha_{0}}; \ \alpha_{0} \neq 0, \frac{\pi}{4}, \frac{\pi}{2}, \frac{3\pi}{4}$$
(16)

Соотношение (13) может служить критерием правильности измерения МОР, причем это можно показать не только для вытянутых частиц, но и для частиц с произвольной формой.

Соотношения (14) позволяют оценить угол преимущественной ориентации частиц. Однако в измерениях часто встречаются ситуации, когда значения P_{12} и P_{13} либо P_{34} и P_{24} близки к нулю. Поэтому в таких случаях рекомендуется при определении α_0 использовать те элементы, которые существенно отличны от нуля. Учитывая, что α_0 изменяется в интервале углов (0 – π), из (14) получаем два значения для α_0 , отличающиеся на $\pi/2$:

$$\alpha_0^1 = \frac{1}{2} \operatorname{arcctg} \left(-\frac{P_{12,34}}{P_{13,24}} \right);$$

$$\alpha_0^2 = \frac{1}{2} \operatorname{arcctg} \left(-\frac{P_{12,34}}{P_{13,24}} \right) + \frac{\pi}{2}.$$
(17)

Для однозначности определения α_0 следует иметь в виду, что для бесконечных цилиндров, когда их оси лежат в плоскости рассеяния, элементы МОР (1) B < 0 и D < 0.

Если
$$P_{12} > 0$$
 ($P_{43} > 0$), то $\frac{\pi}{4} < \alpha_0 < \frac{3\pi}{4}$; если же $P_{12} < 0$ ($P_{43} < 0$), то $0 < \alpha_0 < \frac{\pi}{4}$ или $\frac{3\pi}{4} < \alpha_0 < \pi$.

Соотношения (15) и (16) взаимно дополняют друг друга и полезны для оценки степени ориентированности частиц. Для этого достаточно функцию $i_2(k)$ протабулировать в интервале (0-10) (поскольку $i_2(0) = 0$, $i_2(10) \approx 1$), чтобы по вычисленному $i_2(k)$ можно было оценить параметры распределения Мизеса k и α_k, определяющие степень разброса осей частиц около α₀. Причем, поскольку сумма $P_{11} + P_{44}$ не зависит от типа ориентации, то из (15) и (16) следует, что степень ориентированности прямо пропорциональна либо P₂₂ + P₃₃, либо P₃₂. И, как видно из содержания матрицы (4), при строгой ориентированности частиц соотношения (15), (16) вырождаются в равенство $i_2(k) = 1$. 894

Спорным представляется утверждение авторов [7] о том, что для оценки степени ориентированности можно использовать величину $\sqrt{1-S_4^2}$, где S_4 -нормированный четвертый параметр Стокса рассеянного средой циркулярно поляризованного излучения, измеренный при углах рассеяния $\theta \approx 10$ и 170°. Величина S_4 для циркулярно поляризованного падающего излучения фактически характеризует (P_{14} P_{44}), где P_{14} нулевой элемент матрицы рассеяния, а P_{44} , согласно выводам авторов (да и по нашим результатам (9), (10)), не зависит от угла ориентации. Поэтому изменение данной величины, зафиксированное авторами по результатам измерений, по-видимому, характеризует изменение степени несферичности частиц под воздействием ориентирующего магнитного поля, а не ориентированности.

3. Свойства МОР для ОВЧ

Измерения матрицы рассеяния света аэрозолей, существенно несферических по форме, известны преимущественно по лабораторным исследованиям. Тем не менее полезно провести сравнение полученных результатов с данными для вытянутых круговых цилиндров из гамма-окиси железа (γ -Fe₂O₃), приведенными в [7]. Это сравнение поиводит к следующим теоретическим выводам: *a*) P_{14} = 0 для всех α_0 ; *б*) P_{44} не зависит от α_0 , а P_{33} зависит от α_0 ; *в*) при α_0 = 0 МОР имеет вид

$$\mathbf{P}(0) = \begin{pmatrix} A & i_1 B & 0 & 0\\ i_1 B & \frac{(A-C)}{2} + i_2 \frac{(A+C)}{2} & 0 & 0\\ 0 & 0 & \frac{(C-A)}{2} + i_2 \frac{(A+C)}{2} & -i_1 D\\ 0 & 0 & i_1 D & C \end{pmatrix}.$$
(18)

Аналогичная структура у МОР при $\alpha_0 = \pi/2$, разница только в том, что элементы $P_{12}(P_{21})$ и $P_{34}(P_{43})$ меняют знак на противоположный. В начале статьи авторы [7] приходят к точно такому же выводу, но затем, при анализе поведения P_{12} , делают вывод об отрицательности значений данного элемента МОР при всех α_0 .

Среди других наиболее интересных следствий, вытекающих из содержания МОР, можно отметить следующие:

г) при $\alpha_0 = \pi/4$ МОР имеет вид

$$\mathbf{P}(\pi/4) = \begin{pmatrix} A & 0 & -i_1 B & 0\\ 0 & \frac{(A-C)}{2} - i_2 \frac{(A+C)}{2} & 0 & i_1 D\\ i_1 B & 0 & \frac{(C-A)}{2} - i_2 \frac{(A+C)}{2} & 0\\ 0 & i_1 D & 0 & C \end{pmatrix},$$
(19)

аналогичная структура у МОР при $\alpha_0 = \frac{3\pi}{4}$, разница только в том, что элементы P_{13} (P_{31}) и P_{24} (P_{42}) меняют знак на противоположный;

д) при $\alpha_0 = \pi/8$ МОР имеет вид

$$\mathbf{P}(\pi/8) = \begin{pmatrix} A & \frac{\sqrt{2}}{2}i_{1}B & -\frac{\sqrt{2}}{2}i_{1}B & 0\\ \frac{\sqrt{2}}{2}i_{1}B & \frac{(A-C)}{2} & -i_{2}\frac{(A+C)}{2} & \frac{\sqrt{2}}{2}i_{1}D\\ \frac{\sqrt{2}}{2}i_{1}B & i_{2}\frac{(A+C)}{2} & \frac{(C-A)}{2} & -\frac{\sqrt{2}}{2}i_{1}D\\ 0 & \frac{\sqrt{2}}{2}i_{1}D & \frac{\sqrt{2}}{2}i_{1}D & C \end{pmatrix},$$
(20)

Определение ориентации осесимметричных вытянутых частиц

при $\alpha_0 = 5\pi/8$ МОР аналогична по форме, лишь элементы $P_{13}(P_{31}), P_{24}(P_{42}), P_{12}(P_{21})$ и $P_{34}(P_{43})$ меняют знак на противоположный;

е) при $\alpha_0 = 3\pi/8$ МОР имеет вид

$$\mathbf{P}(3\pi/8) = \begin{pmatrix} A & -\frac{\sqrt{2}}{2}i_1B & -\frac{\sqrt{2}}{2}i_1B & 0\\ -\frac{\sqrt{2}}{2}i_1B & \frac{(A-C)}{2} & i_2\frac{(A+C)}{2} & \frac{\sqrt{2}}{2}i_1D\\ \frac{\sqrt{2}}{2}i_1B & -i_2\frac{(A+C)}{2} & \frac{(C-A)}{2} & \frac{\sqrt{2}}{2}i_1D\\ 0 & \frac{\sqrt{2}}{2}i_1D & -\frac{\sqrt{2}}{2}i_1D & C \end{pmatrix},$$
(21)

при $\alpha_0 = 7\pi/8$ структура МОР аналогичная, за исключением элементов P_{13} (P_{31}), P_{24} (P_{42}), P_{12} (P_{21}) и $P_{34}(P_{43})$, которые меняют свой знак на противоположный.

В [7] были приведены две кривые P_{12} и P_{13} для $\alpha_0 = 70^\circ$, ход которых при углах рассеяния θ, близких к 170°, хорошо соответствует теоретическим оценкам (17).

Результаты измерений, приведенные в [7], в целом подтверждают (с точностью до знака минус) соотношение (13) для диагональных элементов матрицы рассеяния, которое прослеживается также по теоретическим расчетам для сфероидов [5], гексагональных кристаллов [8], и по экспериментальным данным для ледяных туманов [8,9].

Таким образом, выполненный анализ показывает, что несмотря на то, что ориентационная анизотропия несферических частиц может приводить к существенным вариациям параметров аэрозольного светорассеяния, все же, используя свойства МОР (взаимное соотношение элементов), при целенаправленном натурном эксперименте возможна достаточно уверенная индикация состояния и степени преимущественной ориентации ОВЧ.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта 93-05-9376).

- 1. Рахимов Р. Ф., Ромашов Д. Н. // Оптика атмосферы. 1991. Т. 4. N 10. С. 1011–1016.
- 2. Рахимов Р. Ф., Ромашов Д. Н. // Оптика атмосферы и океана. 1992. Т. 5. N 5. С. 451–456. 3. Ван де Хюлст Г. Рассеяние света малыми частицами. М.: ИЛ, 1961. 536 с.

- 4. Любовцева Ю.С., Моисеенко Г.С., Плахина И.Н. // Изв. АН СССР. Сер. ФАО. 1976. Т. 12. N 5. C. 506-514.
- 5. Asano S., Sato M. // Appl. Opt. 1980. V. 19. N 6. P. 962–974.
- 6. Мардиа К. Статистический анализ угловых наблюдений. М.: Наука, 1978. 239 с.
- 7. Подкамень Л.И., Гумилецкий С.Г., Архелюк А.Д. // Изв. АН СССР. Сер. ФАО. 1986. Т. 22. N 12. C. 1286-1292.
- 8. Takano Y., Liou K.N. // J. Atmos. Sci. 1989. V. 46. N 1. P. 3–19.
- 9. Дугин В.П. Исследование оптических характеристик искусственных кристаллических облаков. Дис. канд. физ.-мат. наук. Казань, 1976. 130 с.

Институт оптики атмосферы, СО РАН, Томск

Поступила в редакцию 1 апреля 1993 г.

D.N. Romashov, R.F. Rakhimov. Determination of the Axially Symmetric Elongated Particles **Orientation from Data of Polarization Sounding.**

This paper deals with the analysis of influence of a prevailing orientation of axially symmetric elongated particles on the backscattering phase matrix formation. Based on the analysis of relations between the elements of backscattering phase matrix a possibility is revealed of determining the angle and the degree of prevailing orientation of axially symmetric particles.

Ромашов Д.Н., Рахимов Р.Ф.