СДВИГИ ЛИНИИ ПОГЛОЩЕНИЯ H₂O В ПОЛОСЕ v₁+3v₃, ИНДУЦИРОВАННЫЕ ДАВЛЕНИЕМ Н2, СО2 И Н2О

В.В. Лазарев, Ю.Н. Пономарев, В.Н. Стройнова, Б.А. Тихомиров

Представлены результаты измерений и расчетов сдвигов и ширин линий поглощения H_2O полосы v_1+3v_3 собственным давлением, а также давлением H₂ и CO₂. Измерения выполнены на двухканальном оптикоакустическом спектрометре с перестраиваемым по частоте дазером на рубине. Расчетные значения коэффициентов сдвига и уширения получены по методу Андерсона – Тсао – Карната – Фроста. Проведено сопоставление полученных результатов с литературными данными. Обсуждаются возможные физические механизмы, объясняющие отклонение зависимости измеренного сдвига линий H₂O при уширении давлением H₂ от линейной.

Измерения коэффициентов уширения и сдвига колебательно-вращательных линий Н₂О азотом, кислородом и воздухом, актуальные для решения прямых и обратных задач распространения оптического излучения в планетарных атмосферах, выполнены к настоящему времени для 15 колебательных полос и более чем для 600 линий, расположенных в ИК- и видимом диапазонах спектра [1-20].

Исследования сдвигов линий поглощения H₂O в бинарных смесях с различными атомарными и молекулярными газами представляют интерес для изучения физики межмолекулярных сил в газах. В [20] отмечено, что количественная информация об уширении и сдвигах спектральных линий H₂O такими легкими газами, как Не и Н2, может быть использована для оценок сечений столкновения колебательновозбужденных молекул H₂O с основными газовыми составляющими звездных атмосфер – атомами Не и молекулами Н₂ и для изучения процессов светоиндуцированного дрейфа в звездных атмосферах.

Первые измерения зависимости сдвига колебательно-вращательной линии H₂O давлением H₂ в полосе v_1+3v_3 (видимый диапазон спектра) показали, что она является нелинейной [8, 20]. Такая нелинейная зависимость не может быть объяснена в рамках теории АТСГ [21-23], позволяющей описать основные закономерности поведения коэффициентов сдвига при столкновениях H₂O с более тяжелыми двухатомными молекулами N2 или O2 [24, 25]. При обсуждении результатов эксперимента авторами [20] было предложено развитие экспериментальных исследований с целью выяснения роли ориентационных эффектов, траекторий с закручиванием и ряда других факторов.

В данной статье представлены результаты измерений и расчетов сдвигов и ширин линий поглощения H₂O полосы v₁+3v₃ собственным давлением, а также давлением H₂ и CO₂. Измерения выполнены с целью получения дополнительной информации, которая позволила бы объяснить обнаруженную в [20] нелинейную зависимость сдвига этих линий поглощения давлением Н₂.

Измерения были выполнены на двухканальном оптико-акустическом спектрометре с перестраиваемым по частоте лазером на рубине. Спектрометр, детально описанный в [1, 6], обеспечивал спек-тральное разрешение не хуже 0,015 см⁻¹, пороговую чувствительность по коэффициенту поглощения $5 \cdot 10^{-8}$ см⁻¹ и диапазон перестройки частоты от 14397 до 14405 см⁻¹. Две оптико-акустические ячейки располагались последовательно одна за другой на оси лазерного пучка. Первая ячейка заполнялась чистым водяным паром при давлении несколько Торр, вторая — смесью водяного пара с буферным газом при давлении $P_{\rm 6y\phi} \gg P_{\rm H_{2}O}$ или водяным паром при более высоком давлении (для измерения самоуширення и самосдвига). Таким образом, в эксперименте одновременно регистрировались контур линии чистого водяного пара при малом давлении с несмещенной центральной частотой и контур той же линии, уширенный и сдвинутый давлением постороннего газа. Частота излучения лазера изменялась дискретно от импульса к импульсу. Контроль ширины спектра и изменения частоты лазерного излучения проводился с помощью интерферометра Фабри-Перо с разрешением 0,002 см⁻¹.

Столкновительная ширина линии поглощения и значение коэффициента уширения определялись из измеренной во второй оптико-акустической ячейке ширины контура линии поглощения H₂O согласно [26]. Величина сдвига определялась непосредственно по смещению максимума контура линии поглощения H₂O в смеси с буферным газом (вторая ячейка) относительно максимума контура линии H₂O при малом давлении (первая ячейка). Оценим погрешность измерения сдвига максимума контура линии поглощения, следуя [27]. При измерениях формы контура линии поглощения на одноканальном оптикоакустическом спектрометре с импульсными лазерами, длина волны генерации которых перестраивается дискретно от импульса к импульсу, регистрируют, как правило, сдвиг длины волны $\Delta \lambda_i = \lambda_i - \lambda_0$ относительно центра линии поглощения λ_0 пли относительно значения длины волны в первом импульсе.

В описанной выше экспериментальной установке измерение сдвига длины волны импульсного ла-зера на рубине с узким спектром ($\Delta v - 10^{-2} \text{ см}^{-1}$) осуществлялось с помощью интерферометра Фаб-

ри — Перо по измерению диаметров колец интерференционной картины. Относительная погрешность измеряемой в оптико-акустическом эксперименте величины $\varkappa(\Delta \lambda_i)$ может быть представлена в виде

$$\frac{\delta \varkappa}{\varkappa} = \frac{\delta \varkappa_0}{\varkappa_0} + \frac{\left[\frac{\partial g(\Delta \lambda)}{\partial (\Delta \lambda)}\right] \delta(\Delta \lambda)}{g(\Delta \lambda)},\tag{1}$$

где κ_0 — величина коэффициента поглощения на центральной частоте линии, а $g(\Delta\lambda)$ — нормированная на единичную площадь функция, описывающая форму контура. В первой ОА ячейке измеряется контур линии поглощения чистого водяного пара при малых (несколько Торр) давлениях. Форма контура линии поглощения в этом случае описывается с помощью гауссовского распределения:

$$g(\Delta\lambda) = \frac{2\sqrt{\ln 2}}{\sqrt{\pi}} \frac{1}{\gamma_{\rm D}} \exp\left[\frac{\left(2\sqrt{\ln 2}\right)^2 / \Delta\lambda^2}{\gamma_{\rm D}^2}\right].$$
(2)

Погрешность привязки измеренных значений х к шкале длин волн описывается вторым членом выражения (1), который после подстановки (2) в (1) имеет вид

$$\alpha_{\rm D} = 2(2\sqrt{\ln 2})^2 \left(\frac{\Delta\lambda}{\gamma_{\rm D}}\right)^2 \left[\frac{\delta(\Delta\lambda)}{\Delta\lambda}\right]. \tag{3}$$

Для смеси H_2O с буферным газом во второй ячейке общее давление, как правило, соответствует столкновительному механизму уширения, когда контур линии поглощения близок к лоренцевскому и описывается функцией

$$g(\Delta\lambda) = \frac{1}{2\pi} \frac{\gamma_{\rm L}}{\left(\Delta\lambda\right)^2 + \gamma_{\rm L}^{2/4}}.$$
(4)

После подстановки (4) в (1) получаем выражение, аналогичное (3)

$$\alpha_{L} = \frac{2(\Delta\lambda)^{2}}{(\Delta\lambda)^{2} + \gamma_{L}^{2}/4} \frac{\delta(\Delta\lambda)}{\Delta\lambda} \,.$$
(5)

При определении сдвига длины волны по диаметрам колец интерференционной картины, формируемой интерферометром Фабри – Перо, характерный размер диаметра колец $D_{\rm u}$ составляет 1 см. Это значение типично для интерферометра с базой 2—3 см и объектива с фокусным расстоянием 50 см. Учитывая, что $\delta(\Delta\lambda)/\Delta\lambda \sim 4\Delta D_{\rm u}/D_{\rm u}$ а $\Delta D_{\rm u}/D_{\rm u}$ при обработке интерферограмм с помощью микрофотометра составляет ~ 1%, получим оценку величины $\delta(\Delta\lambda)/\Delta\lambda \leq 4\%$. При измерении сдвигов максимума контуров линий поглощения достаточно осуществлять перестройку длины волны излучения лазера в сравнительно узком интервале длин волн $\Delta\lambda \ll \gamma_D$, γ_L вблизи центра линии поглощения. Тогда при $\Delta\lambda/\gamma_D = 0,2$ получим $\alpha_D \leq 1\%$ и, соответственно, при $\Delta\lambda/\gamma_L = 0,2$ значение $\alpha_L \leq 1,2\%$. Таким образом, общая погрешность измерения сдвига максимума контура линии поглощения в одной из ОА яческ относительно положения максимума в другой ОА ячейке может быть достигнута $\leq 2,2\%$. Следует также отметить, что при измерениях коэффициентов уширения и сдвига линий поглощения давление м постороннего газа на двухканальном оптико-акустическом спектрометре, в измерительных ячейках которого поддерживается одинаковое давление поглощающего газа, автоматически исключается влияние самоуширения. Влияние флуктуаций ширины и формы спектра лазерного излучения от импульса к импульсу также сводится к минимуму.

При измерениях малых величин сдвига, например, в случае, когда измеряется сдвиг линий поглощения H₂O собственным давлением и перепад давлений в измерительных оптико-акустических ячейках невелик, (примерно 10÷15 Topp), удобнее регистрировать производную от контура линии резонансного поглощения. На рис. 1 показаны графики производной $d\varkappa(\Delta\nu)/d(\Delta\nu)$ в области пересечения с осью абсцисс для линии 694,380 нм H₂O при двух различных давлениях. Расстояние между координатами точек пересечения соответствует величине сдвига 0,003 см⁻¹. При разнице давлений в ячейках меньше 10 Торр зафиксировать сдвиг за пределами погрешности измерений уже не удается. Результаты измерения самосдвига, представленные на рис. 1, позволяют оценить разрешение экспериментальной аппаратуры при регистрации сдвига изолированной линии поглощения на уровне 0,001 см⁻¹.

Рис. 1. Производные от контура линии поглощения H₂O 694,380 нм для давлений $P_{\rm H_{2O}}$ = 18,8 Торр (точки) и $P_{\rm H_{2O}}$ = 0,4 Торр (светлые кружки)

Результаты измерения коэффициентов сдвига и уширения линий поглощения H_2O . попадающих в интервал длин волн генерации рубинового лазера, иллюстрируются рис. 2, 3 и табл. 1. На рис. 2 показана зависимость сдвига и полуширины одной из трех линий поглощения H_2O при уширении CO_2 . а на рис. 3 приведены результаты, иллюстрирующие нелинейную зависимость сдвига линий H_2O с малыми значениями $K_{\alpha} = 0,1$ от давления легкого буферного газа H_2 . Заметим, что полуширины всех трех линий зависят от давления H_2 линейно.

Рис. 2. Зависимость полуширины контура Γ_b (светлые кружки) и сдвига центра линии поглощения Γ_s (точки) H_2O 694,380 нм от давления углекислого газа

Рис. 3. Зависимость сдвига центра линии поглощения H₂O 694,380 нм (светлые кружки), 694,237 нм (крестики) и 694,215 нм (точки) от давления водорода

Для обработки экспериментальных результатов использовался алгоритм подгонки измеренного по точкам экспериментального контура к фойгтовскому, предложенный в [28]. В результате определялись коэффициенты уширения и сдвига давлением каждого из буферных газов. Включенные в табл. 1 коэффициенты сдвига линий H₂O давлением H₂ определены для области давлений ниже 400 Торр. При увеличении давления H₂ до 760 Торр сдвиг линий 694, 380 и 694, 237 нм нелинейно зависит от давления H₂.

В той же таблице представлены значения коэффициентов уширения и сдвига, рассчитанные по методу ATCF. Детали метода расчета для случая столкновений молекулы H₂O с двухатомными сим-

метричными молекулами описаны в [25]. При расчете коэффициентов самоуширения и самосдвига учитывались вклады от диполь-дипольного, диполь-квадруполыюго, квадруполь-дипольного, квадруполь-квадрупольного и поляризационных (индукционного и дисперсионного) взаимодействий. В случае уширения H₂ и CO₂ учитывались диполь-квадрупольное, квадруполь-квадрупольное и поляризационные взаимодействия. Рассчитанные коэффициенты самосдвига и самоуширения достаточно хорошо согласуются с измеренными.

Регистрируемые в эксперименте отклонения зависимости сдвига линий поглощения H_2O при возрастании давления H_2 от линейной ранее не наблюдались для смесей H_2O с другими молекулярными (N_2 , O_2 , воздух) и атомарными (Ne, Ar, Kr, Xe) газами [6]. Теория, развитая в [24, 25] для описания сдвигов колебательно-вращательных линий H_2O давлением газов, состоящих из двухатомных симметричных молекул, не может объяснить полученный результат.

	Частота, см	Уширяющий Г _s , см ⁻		атм-1	Γ _{<i>b</i>} , см ^{−1} ·атм ^{−1}	
$(J K_{\alpha} K_{c}) (J K_{\alpha} K_{c})$	(длина волны, нм)	145	эксперимент	расчет	эксперимент	расчет
		H ₂ O	$0,015\pm0,004$	0,014	$0,570\pm0,01$	0,600
414 515	14397,364	CO_2	$-0,008\pm0,001$	-0,010	$0,103\pm0,05$	0,114
	(694,380)	H_2^*	$-0,015\pm0,001$	-0,013	$0,056\pm0,04$	0,065
		H_2O	$0,010\pm 0,003$	0,007	$0,554{\pm}0,01$	0,615
404 505	14400,328	CO ₂	$0,001\pm0,001$	-0,014	0,113±0,07	0,152
	(694,237)	H_2^*	$-0,018\pm0,002$	-0,011	$0,073\pm0,005$	0,082
		$H_{2}O$	$-0,016\pm0,006$	-0,020	$0,585\pm0,01$	0,575
3 2 1 4 2 2	14400,782	CO,	$-0,013\pm0,001$	-0,005	$0,138\pm0,007$	0,123
	(694,215)	H_2^{*}	$-0,019\pm0,002$	-0,016	$0,079{\pm}0,005$	0,091

*Коэффициент сдвига давлением водорода определен на линейном участке от 100 до 400 торр (рис. 3)

Аномальное поведение сдвига линий поглощения H₂O может, на наш взгляд, объясняться следующими физическими механизмами.

1. Увеличением времени взаимодействия молекул H_2O и H_2 при относительном их движении по спиральным траекториям. При таком движении увеличивается время взаимодействия молекул H_2O и H_2 , что может привести к возрастанию вероятности столкновения взаимодействующей пары $H_2O - H_2$ с еще одной молекулой H_2 . С физической точки зрения появление спиральных траекторий может быть обусловлено возрастанием вклада короткодействующих сил и анизотропной составляющей потенциала межмолекулярного взаимодействия. Косвенным образом в пользу этого предположения свидетельствует тот факт, что нелинейность сдвига наблюдается для линий с малыми значениями вращательной энергии ($K_{\alpha} = 0,1$). Однако высказанное в [20] предположение о том, что ориентационные эффекты могут быть заметными при регистрации сдвига в смесях H_2O с CO_2 , где возможно сильное ориентационное взаимодействие, приводящее к образованию комплекса H_2CO_3 , не подтвердилось выполненными в этой статье измерениями. Для тех линий поглощения, сдвиг которых в смесн $H_2O - H_2$ нелинеен, в смеси $H_2O - CO_2$ он линейно зависит от давления CO_2 , достигающего 760 Торр. Теоретический анализ влияния искривления траекторий сталкивающихся молекул на сдвиг спектральных линий выполнен в [29].

2. Эффектом интерференции спектральных линий авторы [30] объяснили нелинейную зависимость сдвига поглощения СО в полосе 0-1 при увеличении давления буферного газа Не до 4 атм. Определяющий величину эффекта параметр кросс-релаксации для условий эксперимента [30] не превышает величины 10^{-2} , что составляет ~ 20% от ширины соответствующей линии. Аналогичны по величине соотношения между параметрами кросс-релаксации для NH₃ в N₂ [31] и чисто вращательного спектра H₂O в O₂, N₂ [32]. Сделанная для условий нашего эксперимента оценка параметра кроссрелаксации с использованием алгоритма [30] для исследуемых линий H₂O дает значение 0,5, что в несколько раз больше ширины линии. Такое несоответствие вызывает сомнения в том, что в нашей ситуации интерференция линий является основным механизмом нелинейной зависимости сдвига линий поглощения H₂O от давления H₂.

3. Кроме двух вышеупомянутых причин следует принять во внимание возможность неполной применимости теории ATCF к описанию столкновения молекул H_2O и H_2 , а именно, необходимость квантовомеханического описания относительного движения молекул, а также возможность учета зависимости параметров столкновения от специфики распределения по скоростям в ансамбле H_2O-H_2 , обсуждавшуюся, например, в [33].

4. Также было бы целесообразно оценить влияние эффекта Дике на зависимость сдвига от давления, аналогично ситуации, возникающей для уширения линий H₂O давлением N₂ [34].

Дальнейшее развитие эксперимента предполагает измерения сдвигов линий поглощения H₂O для различных полос при вариации температуры исследуемых газовых сред, а также расширение перечня уширяющих газов.

Авторы благодарят А.Д. Быкова за полезные обсуждения экспериментальных результатов.

- 1. Пономарев Ю. Н., Тихомиров Б. А. //Оптика и спектроскопия. 1985. Т. 58. С. 947.
- 2. Zuev V.V., Ponomarev Yu.N., Solodov A. M. et al. //Opt. Lett. 1985. V. 10. P. 318.
- 3. Быков А.Д., Коротченко Е.А., Макушкин Ю.С. и др. //Оптика атмосферы. 1988. Т. 1. C. 40.
- 4. Bondarev B.V., Kapitanov V.A., Kobtsev S.M. et al. //The Eleventh Colloquium on High Resolution Molecular Spectroscopy. Giessen. 1989. F12.
- 5. Быков А.Д., Макушкин Ю.С., Синица Л.Н. идр. //Оптика атмосферы 1988. Т. 1. № 3. С. 31.
- 6. Коротченко Е.А., Лазарев В.В., Пономарев Ю.Н. и др. //Оптика атмосферы. 1990. T. 3. C. 1186.
- 7. Bykov A.D., Kapitanov V.A., Lazarev V.V. et al. //The Atmospheric Spectroscopy Application Workshop Proceedings. Institute of Atmospheric Optics, Tomsk. 1990. P. 67.
- 8. Bykov F., Lavrent'eva N., Lazarev V. et al. //The Tweivth Colloquium on High Resolution Molecular Spectroscopy. Dijon. 1991. O33.
- 9. Ageev B.G., Ponomarev Yu.N., Tikhomirov B.A. et al. //The Atmospheric Spectroscopy Application Workshop Proceedings. Institute of Atmospheric Optics, Tomsk, 1990. P. 110.
- 10. Giver L.P., Gentry B., Shwemmer G. et al. //JQSRT. 1982. V. 27. P. 423. 11. Eng R.S., Kelley P.L., Mooradian A. et al. //Chem. Phys. Lett. 1973. V. 19. P. 524.
- 12. Eng R.S., Kelley P.L., Calawa A.R. et al. //Mol. Phys. 1974. V. 28. P. 653.
- 13. Bösenberg J. //Appl. Opt. 1985. V. 24. P. 531.
- 14. Grossmann B.E., Browell E.V.//J. Mol. Spectr. 1989. V. 136. P. 264. 15. Grossmann B.E., Browell E.V.//J. Mol. Spectr. 1989. V. 138. P. 562.
- 16. Nadezhdinskii A.I., Omelyanchuk A.M., Radionov A.R. //1X All Union Simposium on High and Superhigh Resolution Molecular Spectroscopy. Tomsk. 1989. P. 78.
- 17. Nikolaisen F. M. //The Atmospheric Spectroscopy Application Workshop Proceedings. Institute of Atmospheric Optics, Tomsk. 1990. P. 103.
- Chevillard J.P., Mandin M., Flaud J.M. et al. //Can. Phys. 1991. V. 69. P. 1286.
 Malathy Devy V., Benner D.C., Smith M.A.H., Insland C.P. // Paper presented at the 46th International Simposium on Molecular Spectroscopy, Columbus, Ohio, USA, 1991.
- 20. Лазарев В.В., Пономарев Ю.Н., Тихомиров Б.А. //Оптика атмосферы. 1991. Т.4. № 11. C. 1143.
- 21. Anderson P.W. //Phys. Rev. 1949. V. 76. P. 647.
- 22. Tsao C.J., Curnutte B. //JQSRT. 1962. V. 2. P. 41.
- 23. Frost B.S. //J. Phys. B: Atom. Mol. Phys. 1976. V. 9. P. 1001.
- 24. Быков А.Д., Макушкин Ю.С., Стройнова В.Н. //Оптика и спектроскопия. 1988. Т. 64. C. 517.
- 25. Броуэлл Э.В., Гроссман Б.Э., Быков А.Д. и др. //Оптика атмосферы. 1990. Т. 3. С. 675
- 26. Olivero J.J., Longbothum R.L. //JQSRT. 1977. V. 17. P. 233.
- 27. Агеев Б.Г., Пономарев Ю.Н., Тихомиров Б.А. Нелинейная оптикоакустическая спектроскопия молекулярных газов //Новосибирск: Наука, 1987. С. 128.
- 28. Belbruno J.J., Zughul M.B., Gelfand J. et al.//J. Mol. Spectr. 1981. V. 87. P. 560.
- 29. Быков А.Д., Лаврентьева Н.Н., Синица Л.Н. //Оптика атмосферы и океана. 1992. Т. 5. № 9. C. 907-917.
- 30. Tibault F. These presente Pour obtenior le GRADE de DOCTEUR EN SCIENCES DE L UNIVERSIIE PARIS XI ORSAY//Profiles Spectrau et collisions moleculaires deplacement et couplages des raies dansles spectres de vibration rotation de CO et CO2. ORSAY. 1992. P. 194.
- 31. Петрова А.П., Черкасов М.Р. //Оптика и спектроскопия. 1980. Т. 48. С. 256.
- 32. Lam K.S. //JQSRT. 1977. V. 17. P. 351.
- 33. Farrow R.L., Rahn L.A., Sitz G.O. //Phys. Rev. Lett. 1989. V. 63. P. 746.
- 34. Dicke R.N. //Phys. Rev. 1959. V. 89. P. 472.

Институт оптики атмосферы СО РАН, Томск

Поступила в редакцию 26 июня 1992 г.

V.V. Lazarev, Yu.N. Ponomarev, V.N. Stroinova. B.A. Tikhomirov. Shifts of H₂O Absorption Lines of the v_1+3v_3 Band by Pressure of H₂, CO and H₂O.

Measurement and calculational results on shifts and widths of the H₂O absorption lines of v_1+3v_3 band by selfpressure and by the pressure of H_2 and CO_2 are presented. The measurements have been carried out using a dual channel optoacoustic spectrometer with a frequency tunable ruby laser. Calculations of the shift and broadening coefficients were made by the Anderson - Tsao - Curnutte - Frost technique. The obtained results are compared with the data available from the literature. Some possible mechanisms for explaining the deviation of measured pressure behaviour of the H_2O line shift by H_2 pressure from a linear one are discussed.