УДК 539.19

К расчету температурной зависимости коэффициентов уширения вращательных линий поглощения молекулы H₂S давлением гелия

В.И. Стариков*

Томский государственный университет систем управления и радиоэлектроники 634050, г. Томск, пр. Ленина, 40 Юргинский технологический институт (филиал) Национального исследовательского Томского политехнического университета 652055, Кемеровская область, г. Юрга, ул. Ленинградская, 26

Поступила в редакцию 17.02.2011 г.

Рассмотрена задача вычисления коэффициентов уширения вращательных линий поглощения молекулы H₂S давлением гелия при различных температурах, включая температуры, близкие к нулю. Использованы модели параболических и точных траекторий. Показано, что полуклассические методы позволяют восстанавливать экспериментальные данные по коэффициентам уширения для температур, достигающих 10 К. Представлен межмолекулярный потенциал взаимодействия, наилучшим образом описывающий температурную зависимость коэффициентов уширения вращательных линий 1₁₀ ← 1₀₁ и 2₂₀ ← 2₁₁ давлением гелия.

Ключевые слова: уширение, температурная зависимость, H_2S ; He-broadening, temperature dependence, H_2S .

Введение

Интерес к колебательно-вращательному (КВ) спектру сероводорода связан с тем обстоятельством, что этот газ является атмосферным загрязнителем, для которого есть как естественные, так и индустриальные источники. Для атмосферных приложений необходимо знать коэффициенты уширения воздухом, т.е. азотом и кислородом. Экспериментально и теоретически уширение и сдвиг КВ-линий поглощения H_2S в полосах v_1 , v_2 , v_3 и $2v_2$ давлением различных молекулярных газов исследовались в [1–7].

Существенно меньше имеется экспериментальной информации об уширении КВ-линий поглощения H_2S давлением одноатомных газов. В [1] коэффициенты уширения γ давлением гелия были получены для 8 линий поглощения из полосы v_2 , в [2] коэффициенты уширения давлением He, Ne, Ar, Kr и Xe были найдены для 23 линий из полос v_1 , v_2 и v_3 , в [8] определены параметры контуров двух линий из полосы v_2 молекулы H_2S при уширении неоном и криптоном.

Две вращательные линии поглощения $1_{10} \leftarrow 1_{01}$ и $2_{20} \leftarrow 2_{11}$ молекулы H_2S в системе H_2S —Не для температур 4,3 и 1,8 и 1—600 К были изучены в [9, 10]. Хорошее согласие между вычисленными и экспериментальными сечениями рассеяния для этих линий в интервале температур 20—600 К было получено в [11]. В квантовом методе расчета использовалась *ab initio* потенциальная поверхность взаимодействия H_2S с He.

В [12] представлены результаты расчетов коэффициентов уширения КВ-линий поглощения молекулы H_2S в полосах v_1 , v_2 и v_3 давлением He, Ne, Ar, Kr и Xe. В расчетах были оптимизированы параметры межмолекулярного потенциала взаимодействия, выбранного в форме атом-атомного потенциала, для того, чтобы достичь наилучшего согласия с экспериментом. Оптимальный потенциал взаимодействия системы H_2S —Не был использован при расчете коэффициентов уширения вращательных линий поглощения H_2S для температур $100 \le T \le 1000$ K.

Настоящая статья посвящена определению такого потенциала взаимодействия системы H_2S —He, который позволял бы в рамках полуклассического метода описать наиболее полно наблюдаемую экспериментально [10] температурную (1,3 $\leq T \leq 623$ K) зависимость коэффициентов γ для вращательных линий $1_{10} \leftarrow 1_{01}$ и $2_{20} \leftarrow 2_{11}$. Попутно решается и задача определения предельных возможностей полуклассического метода описывать уширения линий при низких температурах.

Метод расчета

Коэффициенты уширения γ_{if} для колебательновращательной линии поглощения (*i*) \rightarrow (*f*) (*i*, *f* – совокупности КВ квантовых чисел) определялись по формуле

^{*} Виталий Иванович Стариков (vstarikov@yandex.ru). © Стариков В.И., 2012

$$\gamma_{if} + i\delta_{if} = \frac{n}{c} \int_{0}^{\infty} vF(v)dv \times \int_{r_0}^{\infty} Dr_c dr_c [1 - \exp(-iS_1 - S_{2,i}^{outer} - S_{2,f}^{outer^*} - S_2^{middle''})]$$
(1)

полуклассического метода Робера-Бонами [13]. В формуле (1) n – плотность газа; c – скорость света; F(v) – больцмановская функция распределения молекул по скоростям v; δ_{if} – коэффициенты сдвига, которые в настоящей статье не рассчитывались. Формулы для якобиана перехода D от переменных (b, v) к переменным (r_c, v) (b – прицельное расстояние, r_c – расстояние наибольшего сближения между молекулами) для расстояния r_0 даны в [13, 14].

Для определения функций прерывания $S_2(b)$ необходимо прежде всего задать потенциал взаимодействия (функция $S_1(b)$ определяется разностью потенциала в различных колебательных состояниях и не учитывается в настоящей работе). Он был выбран в виде суммы парных потенциалов Леннарда-Джонса

$$V = V_{1,2}^{aa} = \sum_{i=1}^{3} \left(\frac{d_{i2}}{r_{i2}^{12}} - \frac{e_{i2}}{r_{i2}^{6}} \right), \tag{2}$$

описывающих взаимодействия между атомами молекулы H₂S (i = 1, 2, 3) и атомом гелия. Индексы iи 2 относятся к атомам молекулы H₂S и гелия соответственно; e_{i2} и d_{i2} – потенциальные параметры. Потенциал (2) разлагается в ряд по вращательным матрицам $D_{mm}^{l_1}(\Omega_1)$, после чего принимает вид [15]:

$$V_{1,2}^{aa} = \sum_{q=0}^{4} \sum_{l_{1}=0}^{2} \sum_{m_{1},m=-l_{1}}^{l_{1}} \left[\frac{|m_{1}|}{m} b_{q}^{l_{1}} \frac{|m_{1}|}{r^{12+q}} - \frac{|m_{1}|}{m} c_{q}^{l_{1}} \frac{|m_{1}|}{r^{6+q}} \right] \times \\ \times D_{mm_{1}}^{l_{1}}(\Omega_{1}),$$
(3)

где *г* определяет расстояние между центрами масс молекулы H₂S и гелия; ^(...) $D_{(...)}^{(...)}$ и ^(...) $E_{(...)}^{(...)}$ – аналитические функции параметров e_{i2} , d_{i2} , $r_{\rm H}$, $r_{\rm S}$, а также расстояний и углов в треугольнике HGH, в котором G – центр масс молекулы H₂S. Выражения для ^(...) $D_{(...)}^{(...)}$ и ^(...) $E_{(...)}^{(...)}$ так же, как и константы $\binom{(...)}{(...)}b_{(...)}^{(...)}$ и ^(...) $E_{(...)}^{(...)}$ так же, как и константы $\binom{(...)}{(...)}b_{(...)}^{(...)}$ и ^(...) $E_{(...)}^{(...)}$ из (3), приведены в [15, 16]. Атом-атомный потенциал (3) содержит как изотропную ($l_1 = 0$), так и анизотропную части. Изотропная часть аппроксимирована потенциалом Леннарда-Джонса (6–12)

$$V_{isot} = 4\varepsilon_{12} \left\{ -\frac{\sigma_{12}^6}{r^6} + \frac{\sigma_{12}^{12}}{r^{12}} \right\},\tag{4}$$

в котором индекс 1 относится к молекуле H_2S . Обычно параметры ε_{12} и σ_{12} рассчитываются по «комбинационным правилам» [17]:

$$\varepsilon_{12} = \sqrt{\varepsilon_1 \varepsilon_2},\tag{5}$$

$$\sigma_{12}=1/2(\sigma_1+\sigma_2).$$

Значения $\varepsilon_2/k_B = 10,2$ К и $\sigma_2 = 2,556$ Å для гелия известны. Согласно [18] для молекулы H₂S $\varepsilon_1/k_B \equiv$ 302 Стар $= ε_{H_2S-H_2S}/k_B = 309,6$ К и $σ_2 = σ_{H_2S-H_2S} = 3,509$ Å. Параметры парных потенциалов d_{H_2} и e_{H_2} могут быть вычислены также по правилу (5) с использованием известных значений $ε_{H-H}/k_B = 11,2544$ К и $σ_{H-H} = 2,68259$ Å [19]. Однако нет данных относительно параметров e_{S_2} и d_{S_2} , которые наряду с параметрами $ε_{12}$ и $σ_{12}$ из (4) рассматриваются в настоящей статье как варьируемые.

Функции прерывания $S_2(b)$ зависят не только от параметров межмолекулярного потенциала, но и от так называемых резонансных функций ${}^{(l_1,l_2)}f_p^{p'}(k)$ с различными наборами индексов $(l_1 = 1,2; l_2 = 0;$ p, p' = 7, 9, 13, 15 для $l_1 = 1$ и p, p' = 8, 10, 14, 16для $l_1 = 2$); аргумент k определяется частотами виртуальных переходов в молекуле H₂S. Эти частоты, так же как и КВ-функции молекулы, были вычислены с помощью эффективного гамильтониана, записанного в терминах производящих функций [6]. Две модели траекторий были использованы для вычисления резонансных функций, а именно модель параболических траекторий (РТ) [13] и модель точных траекторий (ЕТ) [20]. В модели ЕТ резонансные функции вычислялись по методу из [21].

Стартовые межмолекулярные потенциалы

Расчеты коэффициентов уширения были начаты с использованием двух потенциалов взаимодействия. В основе первого потенциала лежали расчеты *ab initio* [11], из него были определены параметры модельного потенциала (3). Далее один из параметров (d_{S_2}) был подобран так, чтобы достичь наилучшего согласия с имеющимися экспериментальными данными по коэффициентам уширения КВ-линий H₂S в полосе v₁ для температуры T = 296 K, для которой имеется наибольшее количество экспериментальных данных [2]. Полученный набор потенциальных параметров приведен во 2-й графе (ET(1)) табл. 1.

Таблица 1

Параметры потенциалов, дающих наилучшее согласие с экспериментальными [2] коэффициентами уширения линий поглощения полосы v₁ молекулы H₂S при уширении гелием (T= 296 K) и уширении двух вращательных линий 1₁₀ \leftarrow 1₀₁ и 2₂₀ \leftarrow 2₁₁ [10] для температур 2,4 \leq T = 296 K \leq 623 K

Параметр	H ₂ S–He							
	ET(1)	ET(2)	ET(3)	PT(4)				
1	2	3	4	5				
ϵ_{12}/k_B , K	10,0	56,0	5,0	5,0				
σ ₁₂ , Å	3,57	3,07	3,8	3,75				
e_{12}	0,11	0,25	0,083	0,076				
d_{12}	0,243	0,217	0,250	0,213				
$e_{\mathrm{H-A}}$	0,0	0,0	0,0	0,0				
$e_{\mathrm{S-A}}$	0,11	0,25	0,083	0,076				
$d_{ m H-A}$	0,014	0,0075	0,014	0,014				
$d_{\mathrm{S-A}}$	0,215	0,202	0,222	0,1854				

Примечание. Параметры e и d даны в 10^{-10} эрг \cdot Å 6 и 10^{-7} эрг \cdot Å 6 соответственно.

Стариков В.И.

Второй набор потенциальных параметров найден с помощью комбинационных правил (5), а также варьированием одного параметра d_{S2}. Этот набор параметров приведен в третьем столбце (ЕТ(2)) табл. 1. Символ ЕТ означает, что расчеты проведены с резонансными функциями из модели точных траекторий. Отметим, что, несмотря на значительное различие в параметрах ε_{12} и σ_{12} , оба потенциала с приблизительно одинаковой точностью rms воспроизводят экспериментальные данные для указанной полосы. В качестве rms используется величина

$$rms = \left\{ \sum_{i=1}^{N} [\gamma_i(exp) - \gamma_i(cal)]^2 / N \right\}^{1/2},$$
 (6)

значения которой приведены в табл. 2 (нижняя строка); там же приведены вычисленные и экспериментальные значения коэффициентов у.

Из рис. 1 и табл. 1 видно, что потенциал ЕТ(1) воспроизводит экспериментально наблюдаемую температурную зависимость коэффициента у для этой линии от 600 до 100 К, дальше идет резкое завышение вычисленных значений у над экспериментальными. На следующем этапе осуществлялся подбор потенциальных параметров для достижения наилучшего согласия вычисленной и температурной зависимости этого коэффициента. В расчетах получено, что для достижения такого согласия необходимо понизить глубину потенциальной ямы ϵ_{12}/k_B с 10 до 5 К. Полученный оптимальный набор параметров [потенциал ЕТ(3)] представлен в 7-й графе табл. 2. Вычисленные значения коэффициентов у для двух линий приведены в соответствующих столбцах табл. З [расчеты ЕТ(3)]. Видно, что совпадение вычисленных и экспериментальных значений удовлетворительное для температур до 8 К.

Таблица 2

Экспериментальные [2] и вычисленные для оптимальных параметров потенциалов (см. табл. 1) коэффициенты уширения ү (см⁻¹ · атм⁻¹) линий поглощения полосы v₁ молекулы H₂S при уширении гелием (T = 296 K)

v, cm ⁻¹	$J_f \ K_{af} \ K_{cf}$		I	VV		H_2S —He					
			$J_i \mathbf{K}_{ai} \mathbf{K}_{ci}$		κ_{ci}	Эксп.	ET(1)	ET(2)	ET(3)	PT(4)	
1		2			3		4	5	6	7	8
2693,2838	4	4	0	3	3	1	0,045	0,041	0,042	0,0354	0,039
2740,9751	5	3	3	4	0	4	0,049	0,043	0,045	0,0378	0,042
2713,8530	5	4	1	4	3	2	0,043	0,042	0,044	0,0372	0,041
2740,0321	6	4	2	5	3	3	0,040	0,041	0,043	0,0368	0,041
2717,9659	6	5	2	5	4	1	0,038	0,039	0,0397	0,0345	0,038
2740,9150	7	6	2	6	5	1	0,031	0,037	0,038	0,0330	0,036
2716,0085	8	4	5	7	3	4	0,040	0,038	0,040	0,0340	0,038
2715,0784	8	3	5	7	4	4	0,044	0,038	0,040	0,0338	0,037
2741,7631	8	6	3	7	5	2	0,035	0,037	0,038	0,0335	0,036
2762,5175	8	7	1	7	6	2	0,036	0,036	0,037	0,0318	0,035
2714,2992	9	3	7	8	2	6	0,036	0,037	0,038	0,0322	0,036
2714,2885	9	2	7	8	3	6	0,037	0,037	0,038	0,0322	0,036
2761,4825	9	7	3	8	6	2	0,040	0,033	0,032	0,0302	0,032
2739,3810	10	5	6	9	4	5	0,052	0,036	0,037	0,0318	0,035
2761,4458	12	6	7	11	5	6	0,038	0,034	0,034	0,0300	0,033
2742,4091	15	0	15	14	1	14	0,030	0,028	0,028	0,0243	0,028
$rms \cdot 10^3 \text{cm}^{-1} \cdot \text{atm}^{-1}$								5,4	5,6	8,2	5,9

 $rms \cdot 10^{3} \text{ cm}^{-1} \cdot \text{atm}^{-1}$

Расчет температурной зависимости коэффициентов уширения вращательных линий

Расчет коэффициентов у для линий 1₁₀ (-1₀₁ и 2₂₀ (-2₁₁ вращательной полосы при различных температурах показал, что первый набор потенциальных параметров значительно лучше воспроизводит экспериментальные данные. На рис. 1 вычисленная температурная зависимость (в логарифмическом масштабе) коэффициентов ү для линии 1₁₀ ← 1₀₁ при использовании двух потенциалов помечена символами Δ и ∇ . Соответственно числа у каждой кривой указывают на значения параметров ε_{12}/k_B (K) и σ_{12} (Å). Экспериментальные данные (табл. 3) показаны темными кружочками. Эти данные были пересчитаны из экспериментальных значений для сечений рассеяния σ по формуле $\gamma(cM^{-1} \cdot aTM^{-1}) = (nv/2\pi c)\sigma(A^2).$

Рис. 1. Вычисленная при различных значениях параметров ε_{12}/k_B (K) и σ_{12} (Å) температурная зависимость коэффициентов уширения γ для вращательной линии 1₁₀ ← 1₀₁ молекулы H₂S при уширении гелием

К расчету температурной зависимости коэффициентов уширения вращательных линий поглощения молекулы H₂S... 303 2. Оптика атмосферы и океана, № 4.

Таблица З

Экспериментальные* [10] и вычисленные с оптимальными потенциалами коэффициенты уширения у для двух вращательных линий поглощения молекулы H₂S при уширении гелием

	1 ₁₀ «	- 1 ₀₁		$2_{20} \leftarrow 2_{11}$				
<i>T</i> , K	Эксп.	ET(3)	PT(4)	<i>T</i> , K	Эксп.	ET(3)	PT(4)	
1	2	3	4	5	6	7	8	
623	0,030	0,030	0,033	602	0,032	0,031	0,034	
505	0,034	0,033	0,036	492	0,036	0,034	0,037	
430	0,038	0,036	0,039	395	0,041	0,037	0,040	
380	0,039	0,037	0,041	365	0,042	0,038	0,042	
300	0,044	0,041	0,045	295	0,047	0,041	0,045	
295	0,044	0,041	0,045	252	0,05	0,044	0,048	
227	0,049	0,046	0,050	201	0,051	0,048	0,052	
182	0,053	0,049	0,054	151	0,058	0,052	0,056	
151	0,055	0,053	0,057	123	0,062	0,055	0,059	
124	0,058	0,056	0,059	108	0,064	0,057	0,061	
100	0,062	0,059	0,063	59,88	0,069	0,063	0,068	
97,12	0,065	0,059	0,064	49,85	0,072	0,065	0,069	
61,56	0,062	0,066	0,070	44,95	0,074	0,066	0,071	
53,01	0,060	0,068	0,072	39,96	0,086	0,067	0,072	
46,98	0,069	0,069	0,073	34,97	0,086	0,068	0,074	
42,80	0,062	0,070	0,075	29,95	0,085	0,069	0,075	
32,54	0,064	0,074	0,079	24,94	0,091	0,072	0,078	
31,00	0,071	0,074	0,08	19,94	0,109	0,077	0,081	
25,80	0,086	0,078	0,083	14,96	0,125	0,085	0,087	
23,05	0,080	0,080	0,085	12,39	0,106	0,096	0,09	
16,90	0,087	0,091	0,093	9,87	0,106	0,07	0,10	
16,74	0,099	0,091	0,093	7,75	0,100	0,07	0,11	
12,19	0,118	0,113	0,010	4,21	0,098	0,15	0,17	
11,10	0,124	0,123	0,11	4,21	0,100	0,15	0,20	
8,59	0,147	0,163	0,123	3,31	0,091	0,5	0,20	
6,66	0,176	0,10	0,142					
4,20	0,237	0,18	0,20					
3,30	0,280	0,26	0,25					
2,85	0,312	0,38	0,28					
2,58	0,328	0,37	0,31					
2,42	0,333	0,40	0,33					
2,30	0,333	0,5	0,35					
2,00	0,357		0,41					
1,72	0,373		0,49					
1,48	0,38		0,58					
1,36	0,38		0,64					

* Экспериментальные коэффициенты уширения γ получены пересчетом из экспериментальных сечений рассеяния. ЕТ и РТ — модели траекторий, используемые для расчета резонансных функций, в скобках указаны используемые потенциалы из табл. 1.

В проведении расчетов возникли определенные трудности, связанные с представлением резонансных функций в модели точных траекторий при низких температурах. При некоторых значениях $\lambda = 8\epsilon_{12}/mv^2$ (*m* – приведенная масса сталкивающихся частиц) и $\beta = \sigma_{12}/r_c$ эти функции не определяются. Параметры λ и β связаны уравнением

$$\lambda\{\beta^{12} - \beta^6\} + (b^*)^2 \ \beta^2 - 1, 0 = 0, \tag{7}$$

в котором $b^* = b/\sigma$. Все интервалы для переменной интегрирования r_c из формулы (1), для которых не

выполняется соотношение (7), должны быть удалены из процедуры интегрирования. На рис. 2 в качестве примера приведена резонансная функция $^{(1,0)}f_7^7(k)$ для различных значений параметра β и $\lambda =$ = 10. Для потенциала с $\varepsilon_{12}/k_B = 10,0$ К это соответствует температуре 2,6 К.

Рис. 2. Вид резонансной функции ${}^{(1,0)}f_7^7(k)$ из модели точной траектории при различных значениях параметров β для $\lambda = 10,0$

Вычисления упрощаются, если использовать резонансные функции из модели параболических траекторий. Эти резонансные функции могут быть представлены в аналитическом виде. Некоторые из них приведены в [13], другие могут быть получены по формулам из Приложения D [14]. На рис. З приведено сравнение резонансных функций $^{(1,0)}f_7^7(k)$, полученных в моделях точной и параболической траекторий.

Рис. 3. Резонансные функции $^{(1,0)}f_7^7(k)$ из модели точной (ЕТ) и параболической (РТ) траекторий; $\lambda = 10,0, \beta = 0.95$

Помимо различия в резонансных функциях, в расчетах по методу Робера—Бонами [13] с использованием РТ-траекторий необходимо учитывать и так называемую эффективную скорость v'_c , связанную с относительной скоростью v соотношением [13]:

$$(v_{\rm c}'/v) = 1 + \lambda [5\beta^{12} - \beta^6].$$
 (8)

Это соотношение определяет якобиан D перехода в интеграле (1). Значения λ и β из этой формулы должны строго удовлетворять соотношению (7).

Использование модели параболических траекторий приводит к необходимости переопределения части параметров потенциала. Найденный оптимальный набор потенциальных параметров для этого случая представлен в 5-й графе (РТ(4)) табл. 1, а вычисленные и экспериментальные значения коэффициентов γ для двух вращательных линий даны в табл. 3 (РТ(4) расчет). Хорошее совпадение этих значений наблюдается до 2,4 К для линии $1_{10} \leftarrow 1_{01}$ и до 7,75 К для линии $2_{20} \leftarrow 2_{11}$.

Найденные оптимальные наборы параметров, дающие наилучшую температурную зависимость коэффициентов уширения γ для вращательных линий, использовались для расчета коэффициентов уширения γ для колебательно-вращательных линий полосы v_1 . Результаты расчетов показаны в 7-й и 8-й графах табл. 2. Эти потенциалы хуже в сравнении с потенциалами (1) и (2) воспроизводят экспериментальные данные из этой полосы.

Заключение

На примере системы H_2S —Не показано, что в рамках полуклассических методов, в частности в рамках рассмотренного метода Робера—Бонами [13], возможно описать температурную зависимость уширения вращательных линий H_2S давлением гелия в широком интервале температур, в том числе и для температур, близких к нулю. Для интервала температур от 600 до 100 К можно использовать потенциал взаимодействия, одинаковый как для вращательной, так и для полосы v_1 . Для более низких температур лучшее согласие с экспериментом дают потенциалы с измененными параметрами.

Модели точных и параболических траекторий дают приблизительно одинаковое качество описания экспериментальных данных вплоть до 10 К, при этом оптимальные наборы параметров потенциалов немного отличаются. Использование модели точных траекторий является технически более сложной процедурой, чем модели параболических траекторий, так как в этой модели необходимо постоянно рассчитывать значения резонансных функций для различных входных параметров λ и β, связанных ограничением (7). Ниже температуры 10 К обе модели не дают правильного описания экспериментальных данных, и это связано с применимостью именно полуклассического метода. Для таких температур, по-видимому, все типы движения молекулы (колебательные, вращательные и поступательные) нужно рассматривать с квантовых позиций.

- 1. Waschull J., Kuhnemann F., Sumpf B. Self-, air, and helium broadening in the v_2 band of H₂S // J. Mol. Spectrosc. 1994. V. 165. P. 150–158.
- 2. Sumpf B., Meusel I., Kronfeldt H.D. Noble Gas Broadening in Fundamental Bands of H_2S // J. Mol. Spectrosc. 1997. V. 184. P. 51–55.
- 3. Sumpf B. Experimental investigation of the self-broadening coefficients in the $v_1 + v_3$ band of SO₂ and $2v_2$ band of H₂S // J. Mol. Spectrosc. 1997. V. 181. P. 160–167.
- 4. Kissel A., Sumpf B., Kronfeldt H.D., Tikhomirov B.A., Ponomarev Yu.N. Molecular-gas-pressure-induced lineshift and line-broadening in the v₂-band of H₂S // J. Mol. Spectrosc. 2002. V. 216. P. 1–10.
- Tejwani G.D., Yeung E.S. Pressure broadened linewidths of hydrogen sulfide // J. Quant. Spectrosc. and Radiat. Transfer. 1997. V. 17. P. 323–326.
- Стариков В.И., Протасевич А.Е. Уширение линий поглощения полосы v₂ молекулы H₂S давлением атмосферных газов // Оптика и спектроскопия. 2006. Т. 101. С. 523–531.
- 7. Sumpf B., Meusel I., Kronfeldt H.D. Self- and airbroadening in the v_1 and v_3 bands of H₂S // J. Mol. Spectrosc. 1966. V. 177. P. 143–145.
- Kissel A., Kronfeldt H.D., Sumpf B., Ponomarev Yu.N., Ptashnik I.V., Tichomirov B.A. Investigation of line profiles in the v₂ band of H₂S // Spectrochimica Acta. A. 1999. V. 55. P. 2007–2013.
- 9. Willey D.R., Bittner D.N., De Lucia F.C. Pressure broadening cross sections for the H_2S –He system in the temperature region between 4.3 and 1.8 K // J. Mol. Spectrosc. 1989. V. 134. P. 240–242.
- Flatin D.C., Goyette T.M., Beaky M.M., Ball C.D., De Lucia F.C. Rotational state dependence of collision induced line broadening and shift at low temperature // J. Chem. Phys. 1999. V. 110. P. 2087–2098.
- 11. Ball C.D., Mengel M., De Lucia F.C., Woon D.E. Quantum scattering calculations for H_2S -He between 1–600 K in comparison with pressure broadening, shift, and time resolved double resonance experiments // J. Chem. Phys. 1999. V. 111. P. 8893–8903.
- 12. *Starikov V.I.* Noble gas broadening calculations for fundamental bands of $H_2S // J$. Comp. Methods in Sciences and Engineering. 2010. V. 10. P. 1–10.
- Robert D., Bonamy J. Short range force effect in semiclassical molecular line broadening calculations // J. de Phys. 1979. V. 40. P. 923–943.
- 14. Стариков В.И., Лаврентьева Н.Н. Столкновительное уширение спектральных линий поглощения молекул атмосферных газов. Томск: Изд-во ИОА СО РАН, 2006. 308 с.
- Labani B., Bonamy J., Robert D., Hartmann J.M., Taine J. Collisional broadening of rotation-vibration lines for asymmetric top molecules // J. Chem. Phys. 1986. V. 84. P. 4256–4267.
- Neshyba S.P., Gamache R.R. Improved line-broadening coefficients for asymmetric rotors molecules with application to ozone lines broadened by nitrogen // J. Quant. Spectrosc. and Radiat. Transfer. 1993. V. 50. P. 443–453.
- 17. Гирифелдер Дж.О., Куртис Ч.Ф., Бред Р. Молекулярная теория газов и жидкостей. М.: Изд-во иностр. лит., 1961. 929 с.
- Monchick L., Mason E.A. Transport properties of polar gases // J. Chem. Phys. 1961. V. 35. P. 1676–1697.
- Bouanich J.P. Site-site Lennard-Jones potential parameters for N₂, O₂, H₂, CO and CO₂ // J. Quant. Spectrosc. and Radiat. Transfer. 1992. V. 47. P. 243–250.

К расчету температурной зависимости коэффициентов уширения вращательных линий поглощения молекулы H₂S... 305 2*.

- 20. Быков А.Д., Лаврентьева Н.Н., Синица Л.Н. Резонансные функции теории уширения и сдвига линий для реальных траекторий // Оптика атмосф. и океана. 1992. Т. 5, № 11. С. 1127–1131.
- 21. Стариков В.И. Вычисление коэффициентов самоуширения линий поглощения молекулы водяного пара в модели реальных траекторий // Оптика и спектроскопия. 2008. Т. 21. С. 757–760.

V.I. Starikov. The temperature dependence calculation of He-broadening coefficients of rotational lines of H₂S molecule.

The results of calculations of He-broadening coefficients of the rotational lines of H_2S molecule at low temperatures are presented and discussed. The parabolic and exact trajectory models are used in the calculations. It is shown that the He-broadening coefficients of H_2S lines measured at up to 10 K may be described in the framework of semi-classical methods. The optimal inter-molecular potential, which gives the best description of the temperature dependence of He-broadening coefficients of two rotational lines $1_{10} \leftarrow 1_{01}$ and $2_{20} \leftarrow 2_{11}$, is found in the calculations.