УДК 551.551

Анализ зависимости нормированной кинетической энергии турбулентности от направления ветра и типа стратификации в приземном слое атмосферы над урбанизированной территорией

А.А. Мамышева, С.Л. Одинцов*

Институт оптики атмосферы им. В.Е. Зуева СО РАН 634021, г. Томск, пл. Академика Зуева, 1

Поступила в редакцию 19.09.2011 г.

Обсуждаются результаты анализа нормированной на скорость трения кинетической энергии турбулентности (E_n) в приземном слое атмосферы над урбанизированной территорией. На основе натурных измерений исследовалась зависимость E_n от направления среднего ветра и типа стратификации. Рассмотрены различные модели E_n , и проведено их сопоставление с экспериментальными данными. Установлено, что использованные модели E_n не обеспечивают должное качество моделирования в тех условиях, которые имелись при натурных измерениях. Предполагается, что для адекватного моделирования E_n требуется учитывать не только направление среднего ветра и тип текущей стратификации, но и другие характеристики потока ветра.

Ключевые слова: кинетическая энергия турбулентности, скорость трения, приземный слой атмосферы, направление ветра, стратификация, моделирование, натурные измерения; kinetic energy of turbulence, friction velocity, atmospheric surface layer, wind direction, stratification, simulation, field measurements.

Значительное внимание при исследовании характеристик турбулентности в приземном слое атмосферы над урбанизированной территорией уделяется кинетической энергии турбулентности (КЭТ) $E = 0.5(\sigma_u^2 + \sigma_v^2 + \sigma_w^2)$ и отдельным ее составляющим (дисперсиям компонентов вектора ветра $\sigma_{u,v,w}^2$). Чаще всего изучаются нормированные значения КЭТ $E_n = E/u_*^2$ и дисперсий $\sigma_{ni}^2 = \sigma_i^2/u_*^2$ (здесь индекс *i* обозначает составляющую вектора ветра). При этом нормирующим множителем служит скорость трения (динамическая скорость)

$$u_* = (\overline{u'w'}^2 + \overline{v'w'}^2)^{1/4},$$

где u', v' и w' — пульсации продольной, поперечной и вертикальной составляющих вектора ветра соответственно; черта сверху обозначает усреднение за интервал времени Δt (предполагаются выполнение гипотезы Тейлора и возможность перехода от усреднения по ансамблю реализаций к усреднению по интервалу времени).

Как правило, изучаются зависимости E_n и σ_{ni}^2 от типа текущей стратификации атмосферы, характеризующейся величиной и знаком масштаба Монина—Обухова $L = -u^3\Theta/\kappa g \overline{w'\theta'}$, где $\kappa = 0,4$ — постоянная Кармана; g — ускорение свободного падения; $\overline{w'\theta'}$ — вертикальный турбулентный поток температуры воздуха; Θ и θ' — средняя и пульсационная составляющие потенциальной температуры воздуха. Вводится безразмерная переменная $\xi = z/L$, где z — высота измерений. На основе обработки экспериментальных данных обычно формируются эмпирические зависимости (модели) вида

$$E_{nm}(\xi) = c_E^2 [1 + d_E |\xi|]^{2/3}$$

И

$$\sigma_{nmi}(\xi) = \sqrt{\sigma_{nmi}^2} = c_{\sigma i} [1 + d_{\sigma i} |\xi|]^{1/3}$$

с постоянными значениями параметров c_x и d_x , разными для различных типов стратификации (см., например, [1–3]). Наличие индекса m здесь и далее обозначает модельную величину. Скорость и направление ветра в этих зависимостях не учитываются.

Однако над урбанизированной территорией с неоднородным распределением элементов подстилающей поверхности (застройка разной этажности, лесопарковые зоны) можно ожидать заметное влияние характеристик среднего потока, в частности направления ветра φ , на значения E_n и σ_{ni}^2 через коэффициенты и показатели степени модельных функций вида

^{*} Алина Александровна Мамышева (alina434@iao.ru); Сергей Леонидович Одинцов (odintsov@iao.ru).

$$E_{nm}(\varphi,\xi) = c_E^2(\varphi) [1 + d_E(\varphi)|\xi]^{2\alpha(\varphi)};$$
(1)

$$\sigma_{nmi}(\varphi,\xi) = \sqrt{\sigma_{ni}^2} = c_{\sigma i}(\varphi)[1 + d_{\sigma i}(\varphi)|\xi]]^{\beta_i(\varphi)}.$$
 (2)

В настоящей статье на основе экспериментальных данных исследуется возможность получения модели $E_n = E/u_*^2$ в форме (1) для конкретной точки наблюдения над урбанизированной территорией. Анализ моделей $\sigma_{nmi}(\varphi, \xi)$ является отдельной задачей и в план данной публикации не входил. Отметим лишь, что выводы, сделанные относительно E_n , в целом будут справедливы и для σ_{nmi} .

Экспериментальные данные были получены в течение 2010 г. в г. Томске (Академгородок) с помощью ультразвуковой метеостанции (УЗМ) «Метео-2», размещенной на мачте над крышей здания (5 м над крышей, 17 м от уровня подстилающей поверхности), окруженного лесопосадками и постройками различной высоты. Подробная схема размещения и характеристики УЗМ изложены в работе [4], где публикуются результаты исследования зависимости непосредственно кинетической энергии турбулентности Е от скорости и направления ветра. Необходимость исследования зависимости нормированной величины КЭТ E_n от направления ветра обусловлена тем, что нормирующий множитель (скорость трения) и также может быть функцией направления ветра.

Обработка экспериментальных данных велась по интервалам времени $\Delta t = 10$ мин (период усреднения). В итоге был получен дискретный ряд средних значений метеорологических параметров, а также различных характеристик турбулентности (одноточечных центральных и смешанных моментов компонентов вектора ветра и температуры воздуха). Общее количество 10-минутных интервалов обработки составило 49396 значений. Из них 10262 были получены при L > 0 (все типы устойчивой стратификации) и 39134 — при L < 0 (все типы неустойчивой стратификации).

Основная цель наших исследований заключалась в получении эмпирической зависимости вида $E_{nm}(\varphi, \xi) = c_E^2(\varphi)[1 + d_E(\varphi)|\xi]]^{2/3}$ и анализе ее параметров. Базой для исследований являлись дисперсии ($\sigma_{u,v,w}^2$) и смешанные моменты ($\overline{u'w'}$, $\overline{v'w'}$) компонентов вектора ветра, позволяющие получить экспериментальные оценки $E_n = E/u_*^2$. Статистическая обеспеченность оценок $E_n(\varphi, \xi)$ для комбинаций значений φ и ξ была различной. На рис. 1, *а* представлены гистограммы распределения направления ветра φ при L > 0 и L < 0. Над колонками указана суммарная длительность наблюдений в соответствующем интервале направлений ветра (целое количество часов).

Очевидно, что при устойчивой стратификации (L > 0) статистическая обеспеченность оценок в диапазоне 240° < $\phi \le 360$ ° невысока. По нашему мнению, причина малого количества случаев устойчивой стратификации в отмеченном диапазоне направлений ветра связана с влиянием повышенной шероховатости подстилающей поверхности, когда исходный устойчиво стратифицированный поток приобретает высокую степень неоднородности в некотором диапазоне высот над лесопосадками и крышами зданий и становится нейтрально стратифицированным (или даже слабо неустойчивым). При этом точка наблюдения для 240° < φ ≤ 360° попадает в окрестности своеобразного «острова» нейтральной стратификации, который должен достаточно быстро завершиться вниз по потоку из-за «плохой памяти» турбулентности.

Данное утверждение основано на результатах сопоставления функций распределения масштаба Монина-Обухова для диапазонов направления ветра $0^{\circ} \le \phi < 240^{\circ}$ и $240^{\circ} < \phi \le 360^{\circ}$ в ночное время, когда в приземном слое атмосферы обычно образуется инверсия температуры (устойчивая стратификация). На рис. 1, а (фрагмент) показаны функции распределения величины L, согласно которым устойчивая стратификация в интервале времени 00:00-07:00 значительно чаще имеет место при направлениях ветра из диапазона 0° ≤ φ < 240° по сравнению с диапазоном 240° ≤ φ < 360°. Это служит косвенным доказательством того, что при одинаковых исходных условиях (в целом устойчиво стратифицированный поток ветра в приземном слое ночной атмосферы) вертикальные турбулентные потоки тепла, определяющие параметр L, могут менять свою величину (и даже знак) над подстилающей поверхностью с усложненной структурой.

Гистограммы распределения величины $\sqrt{E_n}$ для случаев L > 0 и L < 0 приведены на рис. 1, б. Имеется некоторое смещение распределений. В частности, при неустойчивой стратификации для среднего за год значения нормированной кинетической энергии турбулентности $\overline{E_n}$ величина $\sqrt{\overline{E_n}} \approx 2,7$, а при устойчивой $\sqrt{\overline{E_n}} \approx 2,9$. В целом оценки $\overline{E_n}$ согласуются со значениями, приводимыми другими авторами для урбанизированных территорий и территорий с лесопосадками (см., например, [5–7]).

Параметр $c_E(\phi)$ в формуле (1) можно определить, рассматривая случаи больших значений |L|, когда аргумент $|\xi| = z/|L| \rightarrow 0$ (безразличная стратификация приземного слоя атмосферы). Согласно [8] (модель Т-ИЭМ) безразличная стратификация имеет место при |L| > 100. Из дискретного ряда экспериментальных данных нами были выделены случаи, когда выполнялось условие |L| > 100 (выборка из 22934 отсчетов), и для них вычислялись значения $c_E(\varphi_i) = \sqrt{\overline{E}_n(\Delta \varphi_i, \xi \approx 0)}$ в интервалах направлений ветра с шагом $\Delta \phi = 15^\circ$. Высота измерений г полагалась равной 5 м (высота над уровнем крыши). На рис. 2, а приведены графики величин $c_E(\varphi_i)$ и их среднеквадратические отклонения (СКО), полученные для |L| > 100, а также для |L| > 1000(выборка из 3315 отсчетов), когда условие $\xi \to 0$ заведомо выполняется для z = 5 и 17 м (высота измерений над уровнем подстилающей поверхности).

Анализ зависимости нормированной кинетической энергии турбулентности от направления ветра... 375 11. Оптика атмосферы и океана, № 4.

Рис. 1. Гистограммы распределения направления ветра ϕ (*a*) и величина $\sqrt{E_n}$ (*b*) при разных типах температурной стратификации. Над колонками указаны суммарные длительности наблюдений (целое количество часов). На фрагменте (*a*) представлены функции распределения параметра устойчивости *L* в ночное время (суммарно за 2010 г.) для указанных диапазонов направлений ветра

Аппроксимация дискретных значений $c_E(\phi_j)$ полиномом 9-го порядка (обозначим далее аппроксимирующую функцию в виде $c_{Em}(\phi)$) обеспечивает приемлемое качество аналитического представления данного параметра. Графики $c_{Em}(\phi)$ для случаев |L| > 100 и |L| > 1000 показаны на рис. 2, δ в виде

круговых диаграмм. Согласно рис. 2 параметр c_{Em} зависит от направления ветра, меняясь в диапазоне от 2 до 3 со средним значением 2,6 (совокупно по диапазону направлений 0—360°). В дальнейшем экспериментальные значения $E_n(\varphi, \xi)$ нормировались на модельную функцию $c_{Em}^2(\varphi)$ и полученный

дискретный ряд «полуэмпирических» значений $G(\varphi, \xi) = E_n(\varphi, \xi) / c_{Em}^2(\varphi)$ служил основой для последующего анализа.

Рис. 2. Зависимость дискретных значений $c_E(\varphi_j)(a)$, а также аппроксимирующих функций $c_{Em}(\varphi)(b)$ от направления ветра для случаев |L| > 100 (мелкие квадраты) и |L| > 1000(звездочки); отрезками указаны СКО величин $c_E(\varphi_j)(a)$; отдельные большие квадраты — значения $c_E(\varphi_j)$ для случая |L| > 100(b)

По результатам измерений также были получены «среднегодовые» модели величины E_n раздельно для устойчивой и неустойчивой стратификаций.

Для устойчивой стратификации (L > 0)

$$E_n^{1/2}(|\xi|) = 2,74(1+2,11|\xi|)^{1/3}, \qquad (3)$$
$$E_n(|\xi|) = 7.51(1+2,11|\xi|)^{2/3}. \qquad (3a)$$

$$E_n(|\varsigma|) = 1,51(1+2,11|\varsigma|)$$
 (5)

Для неустойчивой стратификации (L < 0)

$$E_n^{1/2}(|\xi|) = 2,61(1+0,26|\xi|)^{1/3}, \qquad (4)$$

 $E_n(|\xi|) = 6.81(1+0.26|\xi|)^{2/3}.$ (4a)

Основная цель работы заключалась, как отмечалось выше, в оценке применимости модели E_n

в виде функции (1) с показателем степени $\alpha = 1/3$, наиболее часто используемом при моделировании. Поскольку аналитическое представление параметра $c_E(\varphi)$ определено, то необходимо на основе экспериментальных данных найти аналитическое представление параметра $d_E(\varphi)$.

Для упрощения анализа значения $G(\varphi, \xi)$ сначала возводились нами в степень «3/2». Затем весь массив значений $[G(\varphi, \xi)]^{3/2}$ разделялся по диапазонам направления ветра с шагом $\Delta \varphi = 15^{\circ}$ ($0 \le \varphi \le 360^{\circ}$) и в каждом диапазоне производилась аппроксимация экспериментальных данных функцией вида

$$D_F = 1 + d_F(\varphi) |\xi|,$$

соответствующей анализируемой модели

$$E_{Fm} = c_{Em}^2 [1 + d_F |\xi|]^{2/3}.$$

Здесь введено обозначение $d_F(\varphi)$ для модельного представления параметра $d_E(\varphi)$. Для примера на рис. З приведены дискретные значения $[G(\varphi, \xi)]^{3/2}$ в отдельных диапазонах направлений ветра и результаты их аппроксимации.

Рис. 3. Экспериментальные данные (символы) и результат их аппроксимации (линии) в диапазонах направления ветра 225–240° для устойчивой стратификации (*a*) и 255–270° для неустойчивой стратификации (*б*). Приведены значения параметра $d_F(\varphi_j)$, коэффициента детерминации $k_F(\varphi_j)$ и объема выборки N, по которой проведена аппроксимация. Высота измерений z = 5 м

Анализ зависимости нормированной кинетической энергии турбулентности от направления ветра... 377

Таблица содержит значения параметра $d_F(\varphi_j)$ и его стандартные ошибки, а также колонку с коэффициентом детерминации $k_F(\varphi_j)$, который характеризует качество аппроксимации экспериментальных данных какой-либо функцией [9]. Высокое качество имеет место при $k_F \rightarrow 1$, неудовлетворительное — при $k_F \rightarrow 0$.

Диапа-			Стан-	Коэф-		Коэф-
30H	Объ-	Пара-	ларт-	тоэф- фициент	Пара-	тоэф- фициент
направ-	ем	метр	ная	летер-	метр	летер-
лений	вы-	$d_r(\omega_i)$	ошибка	минации	$d_1(\omega_i)$	минации
ветра ϕ_j ,	борки	$a_F(\varphi_j)$	$d_{r}(\alpha_{i})$	$k_{\tau}(\omega_{i})$	$a_L(\varphi_j)$	$d_{I}(\omega_{i})$
град			$a_F(\varphi_j)$	$n_{\Gamma}(\psi_{j})$		$u_L(\psi_j)$
Устойчивая стратификация (L > 0)						
0-15	361	7,00	0,06	0,97	0,11	0,87
15 - 30	284	15,28	0,76	0,60	0,59	0,93
30 - 45	318	3,73	0,23	0,75	0,64	0,97
45 - 60	406	2,46	0,16	0,54	0,21	0,96
60 - 75	540	1,45	0,10	0,40	0,09	0,93
75 - 90	566	2,40	0,63	0,12	0,31	0,94
90-105	206	3,72	0,40	0,45	0,45	0,94
105 - 120	183	7,43	0,77	0,38	0,42	0,93
120-135	549	0,93	0,17	0,16	0,09	0,94
135-150	947	1,42	0,11	0,33	0,16	0,96
150-165	552	1,49	0,09	0,49	0,16	0,96
165 - 180	591	0,93	0,07	0,69	0,14	0,97
180-195	1487	0,93	0,07	0,69	0,43	0,97
195-210	1156	24,20	0,35	0,82	0,90	0,96
210 - 225	690	35,93	1,14	0,63	2,10	0,94
225 - 240	379	4,06	0,32	0,71	0,59	0,97
240 - 255	100	4,74	1,84	0,84	1,16	0,98
255 - 270	57	18,26	3,59	0,64	3,00	0,97
270 - 285	83	0,27	0,09	0,83	0,06	0,98
285 - 300	140	6,54	0,28	0,83	0,43	0,96
300-315	163	6,07	0,70	0,45	0,68	0,94
315-330	186	3,71	0,37	0,44	0,34	0,90
330-345	144	8,06	1,72	0,14	0,42	0,86
345-360	181	5,41	0,29	0,66	0,16	0,85
0-360	10271	5,35	0,05	0,54	0,15	0,94
Неустойчивая стратификация (L < 0)						
0-15	861	0,58	0,10	0,11	0,047	0,86
15 - 30	352	0,21	0,16	0,04	0,027	0,90
30 - 45	285	1,53	0,31	0,17	0,152	0,91
45-60	217	1,32	0,17	0,29	0,121	0,90
60-75	222	4,89	1,22	0,12	0,399	0,88
75-90	663	4,98	0,22	0,49	0,340	0,96
90-105	939	4,30	0,14	0,62	0,418	0,96
105-120	674	0,76	0,07	0,51	0,113	0,94
120-135	975	0,68	0,05	0,28	0,054	0,93
150 165	1592	0,23	0,01	0,38	0,012	0,93
100-100	1574	0,83	0,07	0,11	0,051	0,94
103-100	1994	0,19	0,02	0,52	0,010	0,90
105 210	2001	0,14 0.14	0,02	0,33	-0,031	0,90
133-210 210 225	2301	0,14	0,01	0,44	0,000	0,94
210 - 223 225 - 240	3603	0,12	0,00	0,47	0,008	0,95
223-240 240-255	2279	0,15	0.02	0,57	0,023	0.98
255-270	1594	0.40	0.02	0.63	0.042	0.97
270-285	1079	1.92	0.01	0.98	0.036	0.98
285-300	1414	0.57	0.03	0 /1	0.062	0.97
300 - 315	2731	0.41	0.01	0.69	0.025	0.96
315 - 330	2818	0.84	0.01	0.76	0.022	0.93
330 - 345	2294	4.31	0.10	0.47	0.122	0.87
345-360	1158	7,92	0.26	0.46	0,208	0.85
0-360	39125	0,45	0,01	0,18	0,018	0,93

Согласно таблице величина $d_F(\phi)$ изменяется в широких пределах как при устойчивой, так и при неустойчивой стратификации приземного слоя атмосферы. Аппроксимация по всем экспериментальным данным (без разделения по направлению ветра) при устойчивой стратификации приводит к выражению $D_F = 1 + 5,35|\xi|$, а *при неустойчивой* – к выражению $D_F = 1 + 0.45 |\xi|$. Отметим, что отличие осредненных коэффициентов d_F в этих соотношениях от аналогичных параметров в формулах (3) и (4) обусловлено различием моделей E_n , в которые они входят. Величины параметра *d_F* в целом согласуются с результатами, публикуемыми другими авторами. Но невысокие значения коэффициента детерминации $k_F(\varphi_i)$ в некоторых диапазонах направления ветра требуют пользоваться полученными приближениями с определенной осторожностью.

Была проведена также аппроксимация экспериментальных данных функцией вида

$$[G(\varphi,\xi)]^{1/2} \Leftrightarrow D_L = 1 + d_L(\varphi)|\xi|,$$

соответствующей модели

$$E_n = E/u_*^2 \Leftrightarrow E_{Lm} = c_{Em}^2(\varphi)[1 + d_L|\xi]]^{2/3}.$$

Вычисленные при такой аппроксимации значения $d_L(\varphi_j)$ оказались существенно (примерно на порядок величины) меньше значений параметра $d_F(\varphi_j)$, а коэффициенты детерминации $k_L(\varphi_j)$ значительно выше коэффициентов $k_F(\varphi_j)$. Две последние колонки в таблице содержат значения $d_L(\varphi_j)$ и $k_L(\varphi_j)$.

Исходя из предположения, что показатель степени в соотношении (1) также может зависеть от направления ветра, была проведена аппроксимация экспериментальных данных двухпараметрической функцией вида

$$[G(\varphi,\xi)]^{1/2} \Leftrightarrow D_R = [1+d_R(\varphi)|\xi]]^{\alpha(\varphi)},$$

соответствующей исходному соотношению (1). Одновременно определялись параметры $d_R(\varphi_i)$ и $\alpha(\varphi_i)$. Полученные результаты показали, что не в каждом диапазоне направлений ветра возможно применение подобной параметризации (коэффициенты детерминации в этих диапазонах имеют близкие к нулю или даже отрицательные значения). При этом стандартные ошибки вычисленных параметров $d_R(\varphi_i)$ и $\alpha(\phi_i)$ довольно часто были сравнимы и даже превышали по величине сами параметры. Коэффициенты детерминации редко были выше значения 0,4, что говорит о недостаточной адекватности сделанных оценок. По этой причине более детально полученные результаты в статье не обсуждаются. Следует только отметить, что в тех диапазонах направления ветра, где аппроксимацию можно было провести, параметр $d_R(\varphi_j)$ изменялся примерно в том же диапазоне значений, что и параметр $d_F(\varphi_i)$. Совокупно по всем направлениям ветра средние значения d_R составляли 2,06 для устойчивой и 0,19 для неустойчивой стратификации. Показатель степени $\alpha(\varphi_i)$ изменялся в диапазоне от 0,1 до 0,6 со

Мамышева А.А., Одинцов С.Л.

средними значениями (оценка по всем направлениям ветра) $\overline{\alpha} = 0,37$ при устойчивой и $\overline{\alpha} = 0,40$ при неустойчивой стратификации приземного слоя атмосферы.

Естественным итогом проведенных исследований должен быть вывод о том, какая из полученных моделей является наиболее приемлемой для пункта наблюдений, т.е. следует сравнить исходные экспериментальные данные с полученными моделями. Для сравнений требуется перейти от дискретных значений параметров $d_F(\varphi_j)$ и $d_L(\varphi_j)$ к их аналитическому представлению, как это было сделано ранее для параметра $c_E(\varphi_j)$.

Результаты анализа показали, что аппроксимировать дискретные значения $d_F(\varphi_i)$ и $d_L(\varphi_i)$ какой-либо одной функцией во всем диапазоне направлений ветра 0-360° не удается. В этой связи нами выделялись отдельные секторы направления ветра, и в этих секторах производился подбор соответствующей аппроксимирующей функции. Такой порядок обработки применялся для всех комбинаций $d_F(\varphi_i)$ (или $d_L(\varphi_i)$) и типов стратификации. Критерием качества аппроксимации служил коэффициент детерминации. Из всех использованных при «подгонке» к экспериментальным данным функций выбиралась те, коэффициенты детерминации которых были максимальными. В большинстве случаев приемлемое качество аппроксимации достигалось использованием полиномов различной степени (от 3 до 9). Пример сопоставления исходных (дискретных) значений $d_F(\varphi_j)$ и $d_L(\varphi_j)$ с аппроксимирующими их функциями показан на рис. 4 в виде круговых диаграмм.

Полученные аппроксимирующие функции для параметров $d_F(\varphi_i)$ и $d_L(\varphi_i)$ позволили провести сравнение исследуемой экспериментальной величины $E_n = E/u_*^2$ с ее моделями E_{nm} . В результате установлено, что в целом нет особых преимуществ у той или иной из полученных моделей E_{nm}. Сравнение разверток во времени модельных и экспериментальных значений $E_n(t)$ показывает, что на некоторых интервалах времени имеется удовлетворительное совпадение сравниваемых величин, а на некоторых - неудовлетворительное. В качестве примера на рис. 5 приведен фрагмент развертки экспериментальных и модельных (E_{Fm} и E_{Lm}) значений нормированной КЭТ, а также модели Е_{Fm} с постоянным (средним по всем направлениям ветра) параметром \overline{d}_F , разным для устойчивой ($\overline{d}_F = 5,35$) и неустойчивой ($\overline{d}_F = 0,45$) стратификации. Обозначим данный вариант модели как $E_{F.C.}$

Мерой качества применяемой модели может служить относительная ошибка δ_i (%), определяемая по формуле

$$\delta_i = 100 \frac{E_{nm} - E_{ne}}{E_{ne}},\tag{5}$$

где E_{nm} и E_{ne} — соответственно экспериментальное и модельное значения в момент времени t_i .

Рис. 4. Сравнение экспериментальных значений (символы) параметров $d_{l}(\varphi_{j})$ (*a*) и $d_{L}(\varphi_{j})$ (*б*) с аппроксимирующими их функциями (линии) для устойчивой (сплошные символы) и неустойчивой (открытые символы) стратификации

Оценки ошибок δ_i для моделей

$$E_{Fm} = c_{Em}^2 [1 + d_F |\xi]]^{2/3}$$
 и $E_{Lm} = c_{Em}^2 [1 + d_L |\xi]]^2$

показали, что хорошее согласование экспериментальных данных с модельными (считаем, что это отвечает неравенству $|\delta_i| \le 10\%$) реализуется примерно в 20—25% времени наблюдений, а удовлетворительное ($|\delta_i| \le 20\%$) — примерно в 40—45% времени. Вычисления δ_i раздельно для условий |L| > 100, $0 \le L \le 100$ и $-100 \le L < 0$ показали, что качество полученных моделей практически не зависит от типа стратификации. Для примера на рис. 6 представлены гистограммы распределения ошибок δ_i , вычисленных для моделей E_{Fm} и $E_{F,C}$.

Анализ зависимости нормированной кинетической энергии турбулентности от направления ветра... 379

Рис. 5. Сравнение экспериментальных значений нормированной КЭТ (символы) с модельными значениями E_{Fm} (сплошная тонкая линия), E_{Lm} (сплошная толстая линия) и $E_{F,C}$ (штриховая линия)

Рис. 6. Гистограммы распределения ошибок δ_i , вычисленных для моделей E_{Fm} и $E_{F,C}$

Очевидно, что учет зависимости параметра d_F от направления ветра улучшает качество подгонки к экспериментальным данным, но все же не обеспечивает достаточную степень достоверности модели нормированной КЭТ. Мы полагаем, что модели статистических характеристик турбулентности в при-

земном слое атмосферы, пригодные для дальнейшего использования, должны обеспечивать выполнение условия $|\delta_i| \le 10\%$ не менее чем в 50% и условия $|\delta_i| \le 20\%$ не менее чем в 80% времени наблюдения.

Следует отметить, что хорошее согласование модели $E_{Fm} = c_{Em}^2 [1 + d_F |\xi]^{2/3}$ с экспериментальными

Мамышева А.А., Одинцов С.Л.

данными не определяется какими-либо четкими условиями. Например, нельзя утверждать, что в диапазоне скоростей ветра от X_1 до X_2 (м/с) и в диапазоне направлений ветра от Y_1 до Y_2° при неустойчивой (или устойчивой) стратификации модель всегда обеспечивает хорошее согласование с экспериментальными данными. Проведенный анализ показал, что какие бы комбинации условий ни рассматривались, ошибки модели δ_i могут быть как большими, так и маленькими. Функция распределения ошибок δ_i в различных комбинациях условий различна. Но нигде процент «хороших» ошибок не бывает подавляющим. Естественно, сделанный вывод касается только конкретного места проводившихся наблюдений.

Невысокий процент согласованности экспериментальных данных и моделей E_n в форме (1) над урбанизированной территорией требует проведения дальнейших исследований, направленных на изучение зависимости Е_n не только от текущей стратификации и направления ветра, но и от других характеристик. Результаты анализа зависимости параметров c_E и d_F (или d_L) от скорости ветра показали, что эта зависимость слабая и не может объяснить имеющиеся расхождения между экспериментальными и модельными оценками Е_n. По-видимому, при построении моделей нормированной кинетической энергии турбулентности следует учитывать более «тонкую» структуру поля турбулентности в приземном слое атмосферы над урбанизированной территорией, например, учитывать свойства смешанных моментов и'w' и v'w', формирующих величину динамической скорости и*.

Подводя итог, можно сделать следующие выводы. В условиях урбанизированной территории нормированная на квадрат динамической скорости кинетическая энергия турбулентности $E_n = E / u^2$

зависит от направления ветра. Эта зависимость может быть параметризирована аналитическими выражениями. Для построения адекватной модели E_n требуется учитывать не только направление ветра и тип текущей стратификации приземного слоя атмосферы, но и другие характеристики потока ветра.

Работа выполнена при финансовой поддержке Минобрнауки (госконтракты № 02.740.11.0674 и 14.740.11.0204), а также проекта № 4.1 Президиума РАН.

- Rotach M.W. Turbulence close to a rough urban surface. Part II: variances and gradients // Boundary-Layer Meteorol. 1993. V. 66, N 1–2. P. 75–92.
- Al-Jiboori M.H., Xu Y., Qian Y. Local similarity relationship in the urban boundary layer // Boundary-Layer Meteorol. 2002. V. 102, N 1. P. 63–82.
- Quan L., Hu F. Relationship between turbulent flux and variance in the urban canopy // Meteorol. and Atmos. Phys. 2009. V. 104, N 1–2. P. 29–36.
- Мамышева А.А., Одинцов С.Л. Экспериментальная оценка кинетической энергии турбулентности в приземном слое атмосферы над урбанизированной территорией // Оптика атмосф. и океана. 2011. Т. 24, № 9. С. 817–827.
- Rotach M.W. Profiles of turbulence statistics in and above an urban street canyon // Atmos. Environ. 1995. V. 29, N 13. P. 1773–1486.
- Hanna S., White J., Zhou Y. Observed winds, turbulence, and dispersion in built-up downtown areas of Oklahoma City and Manhattan // Boundary-Layer Meteorol. 2007. V. 125, N 3. P. 441–468.
- Lee Y.-H. The influence of local stability on heat and momentum transfer within open canopies // Boundary-Layer Meteorol. 2009. V. 132, N 3. P. 383–399.
- 8. Бызова Н.Л., Иванов В.Н., Гаргер Е.К. Турбулентность в пограничном слое атмосферы. Л.: Гидрометеоиздат, 1989. 264 с.
- 9. Колемаев В.А., Староверов О.В., Турундаевский В.Б. Теория вероятностей и математическая статистика. М.: Высш. шк., 1991. 400 с.

A.A. Mamysheva, S.L. Odintsov. Analysis of the normalized kinetic energy of turbulence as a function of wind direction and type of stratification in the atmospheric surface layer over an urban territory.

The paper discusses results of analysis of the kinetic energy of turbulence (E_n) normalized to the friction velocity in the atmospheric surface layer over an urban territory. Field measurements are used to study E_n dependence on the wind direction and type of stratification. Different models of E_n are considered and compared with experimental data. It is found that the use of E_n models fails to provide the proper simulation quality under the conditions that took place during the field measurements. It is supposed that for the adequate simulation of E_n one should take into account not only the mean wind direction and the type of current stratification, but also other wind flow characteristics.