УДК 51-73:535

Численное моделирование краевых эффектов в оптике аэрозоля и облаков

Л.П. Басс¹, <u>Т.А. Гермогенова</u>¹, О.В. Николаева¹, А.А. Кохановский^{2,3}, В.С. Кузнецов⁴*

¹Институт прикладной математики им. М.В. Келдыша РАН

125047, г. Москва, Миусская площадь, 4, Россия

²Институт физики им. Б.И. Степанова НАН Белоруссии, г. Минск, Белоруссия

³Институт физики окружающей среды, Бременский университет, Германия

⁴Государственный научный центр «Курчатовский институт»

123182, г. Москва, пл. Академика Курчатова, 1, Россия

Поступила в редакцию 14.08.2008 г.

Рассматривается задача расчета коэффициента яркости отраженного атмосферой солнечного света в присутствии пространственно-локальных горизонтальных неоднородностей (поверхностей разрыва свойств) среды, где не могут быть применены традиционно используемые в таких расчетах одномерные математические модели. Предложена двумерная математическая модель, позволяющая получать детальное пространственное распределение коэффициента яркости в окрестности неоднородности, с ее помощью получены характерные распределения в модельной задаче. Для оперативной оценки размера включающей неоднородность подобласти, вне которой многомерными эффектами в коэффициенте яркости можно пренебречь, предложена квазиодномерная модель и выполнено ее численное тестирование.

Ключевые слова: краевые эффекты, облака, математическая модель.

Введение

Большинство существующих в настоящее время радиационных моделей атмосферы опираются на предположение о ее горизонтальной однородности [1]. Это позволяет использовать для определения радиационных полей хорошо изученную модель плоского слоя [1]. Подобные модели, однако, применимы только к безоблачной атмосфере или к сплошной облачности. При спутниковом зондировании реальной атмосферы [2, 3] необходимо учитывать пространственно-локальные горизонтальные неоднородности (поверхности разрыва свойств среды), а при ее моделировании – использовать многомерные (по пространству) математические модели [5-7]. Однако переход к многомерным моделям приводит к значительному увеличению времени расчета. Поэтому были предложены упрощенные модели, позволяющие приближенно учесть влияние горизонтальной неоднородности облаков на интенсивность отраженного ими солнечного света в различных предположениях о свойствах этих облаков (см., например, [8, 9]). Тем не менее точность таких моделей может быть

недостаточной, поскольку интенсивность излучения вблизи неоднородности сложным образом зависит от пространственных координат.

В настоящей статье предлагается многомерная численная модель, позволяющая найти детальное пространственное распределение световых полей в окрестности неоднородности. Кроме того, представлена упрощенная квазиодномерная модель, которая может быть использована для определения этой окрестности, т.е. для оценки размеров подобластей вблизи неоднородности, где многомерными эффектами в интенсивности излучения нельзя пренебречь.

1. Двумерная модель

Рассмотрим алгоритм расчета полей излучения вблизи неоднородности на примере модельной задачи, область расчета которой изображена на рис. 1.

Здесь две среды — облако и аэрозоль — имеют только одну прямую вертикальную общую границу и являются бесконечно протяженными по горизонтали (рассматривается четкая модель границы облако/аэрозоль). Предположим, что азимутальный угол Солнца Ф может принимать только два значения: 0 и 180°. В этом случае для решения поставленной задачи можно воспользоваться двумерной моделью, которой соответствует краевая задача для уравнения переноса в (x, z) геометрии:

Численное моделирование краевых эффектов в оптике аэрозоля и облаков

^{*} Леонид Петрович Басс (bass@kiam.ru); Татьяна Анатольевна Гермогенова; Ольга Васильевна Николаева (nika@kiam.ru); Александр Анатольевич Кохановский (alexk@iup.physik.uni-bremen.de); Виктор Сергеевич Кузнецов (lri@bk.ru).

Рис. 1. Область расчета модельной задачи

$$\begin{split} \mu \frac{\partial I}{\partial z} + \xi \frac{\partial I}{\partial x} + \sigma(x,z)I &= \sigma_S(x,z) \times \\ \times \frac{1}{2\pi} \int_{-1}^{1} d\mu' \int_{0}^{\pi} d\phi' \rho(x,z,\chi) I(x,z,\mu',\phi') + Q(x,z,\mu,\phi); \quad (1) \\ \chi &= \chi(\mu,\phi,\mu',\phi') = \mu\mu' + \sqrt{1-\mu^2} \sqrt{1-(\mu')^2} \cos(\phi - \phi'), \\ \xi &= \sqrt{1-\mu^2} \cos\phi; \\ -x^{app} < x < x^{o6\pi}; \quad 0 < z < H; \quad -1 < \mu < 1; \quad 0 < \phi < \pi. \end{split}$$

Функция $I(x, z, \mu, \varphi)$ определяет интенсивность рассеянного света в пространственной точке (x, z) в области $[-x^{a^{a^{p}}}, x^{o^{6^{1}}}] \times [0, H]$ в направлении вектора Ω с координатами (μ, φ) , где $\mu = \cos\theta$, θ — полярный угол, φ — азимутальный угол (см. рис. 1); σ сечение экстинкции; σ_{S} и ρ — сечение и фазовая функция рассеяния соответственно, являющиеся кусочно-постоянными функциями горизонтальной координаты *x*:

$$\sigma(x,z) = \begin{cases} \sigma^{o6\pi}(z) & \text{при } x > 0, \\ \sigma^{a3p}(z) & \text{при } x < 0, \end{cases}$$
$$\sigma_{S}(x,z) = \begin{cases} \sigma_{S}^{o6\pi}(z) & \text{при } x < 0, \\ \sigma_{S}^{a3p}(z) & \text{при } x < 0; \end{cases}$$
$$\rho(x,z,\chi) = \begin{cases} \rho^{o6\pi}(z,\chi) & \text{при } x < 0; \\ \rho^{a3p}(z,\chi) & \text{при } x < 0, \end{cases}$$

Источник *Q* в уравнении (1) связан с однократным рассеянием прямого света.

Присоединим к уравнению (1) нулевые краевые условия на верхней и нижней границах z = 0 и z = H соответственно:

$$I(x,0,\mu,\phi)\Big|_{\mu>0} = 0, \quad I(x,H,\mu,\phi)\Big|_{\mu<0} = 0, \quad (2)$$

означающие, что рассеянные фотоны не входят в область через эти границы.

Боковые границы $x = -x^{a_{3}p}$ и $x = x^{o_{6,1}}$ (см. рис. 1) выберем настолько удаленными от плоскости x = 0, чтобы влияние разрыва свойств среды на решение *I* при $x = -x^{\text{аэр}}$, $x = x^{\text{обл}}$ было пренебрежимо мало (алгоритм выбора этих точек описан в разд. 2). Зададим на этих границах *условие полубесконечности* [10]:

$$I(-x^{app}, z, \mu, \varphi)\Big|_{0 < \varphi < \pi/2} = I(-x^*, z, \mu, \varphi),$$
$$I(x^{o6\pi}, z, \mu, \varphi)\Big|_{\pi/2 < \varphi < \pi} = I(x^{**}, z, \mu, \varphi),$$
(3)

где точки $-x^*$ и x^{**} расположены на достаточном удалении как от внешних границ $x = -x^{\text{аэр}}$ и $x = x^{\text{обл}}$, так и от внутренней границы x = 0.

Использование краевых условий (3) приводит к тому, что решение *I* вблизи боковых границ не зависит от *x* и по величине совпадает со значением интенсивности излучения в глубинах облака (для $x \approx x^{\text{обл}}$) и аэрозоля (для $x \approx -x^{\text{аэр}}$) [10]. Таким образом, задача (1)–(3) позволяет проводить расчеты интенсивности световых полей локально в окрестности границы разрыва свойств среды.

Рассмотрим модельную задачу, в которой высота области расчета H = 4 км (см. рис. 1). Будем полагать, что непоглощающий аэрозоль имеет оптическую толщину $\tau^{aэp} = \sigma^{aэp}H = 1,2$, а рассеяние в нем моделируется фазовой функцией Хеньи–Гринстейна с параметром асимметрии $g^{aэp} = 0,7$. Облако имеет оптическую толщину $\tau^{o6n} = \sigma^{o6n}H = 20$, альбедо однократного рассеяния $\lambda^{o6n} = \sigma^{o6n}_S / \sigma^{o6n}$, и рассеяние в нем происходит в соответствии с законом Ми [11] с параметром асимметрии $g^{o6n} = 0,856$. Соответствующая фазовая функция получена для длины волны 412 нм в предположении, что капли в облаке характеризуются гамма-распределением частиц по размерам (модальный радиус 4 мкм, коэффициент вариации распределения 0,38).

Найдем в этой задаче коэффициент яркости отраженного в зенит излучения (см. рис. 1):

$$R(x) = \pi I(x, 0, \mathbf{\Omega}_{\text{3 eHHT}}) / [E_0 | \cos \Theta_0 |].$$
(4)

Здесь $E_0 = \pi S$ — освещенность площадки, нормальной к солнечному лучу, на верхней границе слоя z = 0.

Басс Л.П., Гермогенова Т.А., Николаева О.В. и др.

202

Решение двумерной задачи (1)—(3) выполняется с помощью метода дискретных ординат по программе РАДУГА-5.2(П) [10] на параллельном суперкомпьютере MBC-15000 (www.jscc.ru). Коэффициент яркости $R^{2D}(x)$, полученный в рамках двумерной модели, представлен на рис. 2.

Рис. 2. Коэффициент яркости $R^{2D}(x)$ при азимутальном угле Солнца $\Phi = 0^{\circ}(a)$ и 180° (*б*), различных значениях зенитного угла Солнца Θ_0 и альбедо однократного рассеяния в облаке λ^{063} : $1 - \lambda^{063} = 1$; 2 - 0.99; 3 - 0.95; 4 - 0.9

Численное моделирование краевых эффектов в оптике аэрозоля и облаков

Направление движения нерассеянных фотонов указано черной стрелкой. На рис. 2, *а* используется линейный, на рис. 2, *б* – логарифмический масштаб.

Приведенные данные показывают, что, когда нерассеянные фотоны входят к облако через вертикальную границу (при $\Phi = 0^{\circ}$), возникает эффект осветления, т.е. максимум яркости в облаке вблизи его вертикальной границы (см. рис. 2, *a*). Этот максимум яркости возникает благодаря тому, что интенсивность нерассеянных фотонов в облаке, являющихся источником рассеянных фотонов, из-за малой оптической плотности аэрозоля имеет максимум вблизи вертикальной границы.

Если нерассеянные фотоны входят в облако только через его верхнюю границу (случай $\Phi = 180^{\circ}$, см. рис. 2, δ), возникает эффект затенения, т.е. минимума яркости, в аэрозоле вблизи вертикальной границы. Этот минимум отвечает минимуму интенсивности нерассеянных фотонов в нижней части оптически плотного облака.

Увеличение зенитного угла Солнца Θ_0 приводит к усилению обоих эффектов. Уменьшение альбедо однократного рассеяния в облаке $\lambda^{06\pi}$ усиливает эффект затенения и ослабляет эффект осветления.

2. Квазиодномерная модель

При реализации двумерного алгоритма важно знать границы $-x^{aэp}$ и x^{o6n} . Чтобы найти их, используем квазиодномерную модель [12], опирающуюся на кусочно-линейную аппроксимацию решения I по высоте:

$$\begin{split} &I(x,z,\mu,\varphi)\Big|_{\mu>0} = \\ = \begin{cases} I_0(x,\mu,\varphi) + \frac{\left[I_H(x,\mu,\varphi) - I_0(x,\mu,\varphi)\right]z}{z_0} & \text{при } 0 \le z \le z_0, \\ I_H(x,\mu,\varphi) & \text{при } z_0 \le z \le H, \end{cases} \end{split}$$

$$I(x,z,\mu,\phi)\Big|_{\mu<0} =$$

$$=\begin{cases} I_0(x,\mu,\phi) \\ \text{при } 0 \le z \le H - z_0, \\ I_0(x,\mu,\phi) + \frac{\left[I_H(x,\mu,\phi) - I_0(x,\mu,\phi)\right](z - H + z_0)}{z_0} \\ \text{при } H - z_0 \le z \le H. \end{cases}$$

Здесь точка z_0 разбивает интервал (0, H) на два подынтервала, на одном из которых используется линейная, а на другом постоянная интерполяция для решения *I*. В частности, при $z_0 = 0$ решение *I* на всем интервале [0, H] аппроксимируется константой. При $z_0 = H$ решение *I* на всем интервале [0, H] заменяется линейной функцией:

$$I(x, z, \mu, \varphi) = I_0(x, \mu, \varphi) \left[1 - \frac{z}{H} \right] + \frac{I_H(x, \mu, \varphi)z}{H}$$

при $z_0 = H$ и любом μ .

Среднее по высоте решение
$$\overline{I} = \frac{1}{H} \int_{0}^{H} dz I(x, z, \mu, \varphi)$$

определяется уравнением

$$\xi \frac{\partial I}{\partial x} + \overline{I}\overline{\sigma}(x,\mu) =$$
$$= \frac{1}{2\pi} \int_{-1}^{1} d\mu' \int_{0}^{\pi} d\phi' \overline{\sigma}_{S}(x,\mu,\mu',\phi,\phi') \overline{I}(x,\mu',\phi') + \overline{Q}, \quad (5)$$

где $\overline{\sigma}$, $\overline{\sigma}_S$, \overline{Q} — коэффициенты и источник, усредненные по высоте с некоторыми весовыми функциями (см. [12]). Краевые условия для этого уравнения подобны (3):

$$\overline{I}(-X,\mu,\varphi)\Big|_{0<\varphi<\pi/2} = \overline{I}(-x^*,\mu,\varphi),$$

$$\overline{I}(X,\mu,\varphi)\Big|_{\pi/2<\varphi<\pi} = \overline{I}(x^{**},\mu,\varphi).$$
 (6)

Предполагается, что координаты -X и X отвечают точкам, сильно удаленным от границы x = 0. Решение одномерной задачи (5), (6) находится сеточным методом [10]. Это требует гораздо меньше времени, чем решение двумерной задачи (1)–(3) даже для очень больших X.

Для рассмотренной выше модельной задачи были получены функции, характеризующие процентное отклонение коэффициента отраженной в зенит яркости в пограничном слое от соответствующего его значения, относящегося к пространственным точкам, удаленным от горизонтальной неоднородности:

$$\varepsilon^{2D}(x) = \begin{cases} 100 |1 - R^{2D}(x) / R^{2D}(-x^*)| \% & \text{при } x < 0, \\ 100 |1 - R^{2D}(x) / R^{2D}(x^{**})| \% & \text{при } x > 0, \end{cases}$$
$$\varepsilon^{1D}(x) = \begin{cases} 100 |1 - R^{1D}(x) / R^{1D}(-x^*)| \% & \text{при } x < 0, \\ 100 |1 - R^{1D}(x) / R^{1D}(x^{**})| \% & \text{при } x > 0. \end{cases}$$

Здесь функция $R^{2D}(x)$ определяет коэффициент яркости (4), полученный по двумерной модели, тогда как функция $R^{1D}(x)$ относится к аналогичной величине, найденной по квазиодномерной модели. Величины $R^{2D}(-x^*)$ и $R^{2D}(x^{**})$ можно рассматривать как значения коэффициентов яркости, полученные в *IPA-приближении*, где один пиксель занимает область x < 0, а другой – область x > 0. В этом случае функция $\varepsilon^{2D}(x)$ определяет ошибку IPA-модели.

На рис. З приведены графики функций $\epsilon^{1D}(x)$ и $\epsilon^{2D}(x)$ для трех значений параметра $p = z_0/(2H)$ (p = 0, p = 1/3, p = 1). Там же штрихпунктирной линией обозначено значение допустимой ошибки в 5% (такой уровень выбран, поскольку точность и калибровка современной оптической аппаратуры, установленной на спутниках, обычно не лучше 5%).

Примем в качестве границы пограничного слоя точку, где функции $\varepsilon^{1D}(x)$ и $\varepsilon^{2D}(x)$ становятся меньше 5%. В табл. 1, 2 приведены значения размеров пограничных слоев, соответствующие точной 2D-

Басс Л.П., Гермогенова Т.А., Николаева О.В. и др.

204

Таблица 1 Размеры пограничных слоев $x^{a^{a^{p}}}$ и $x^{o^{6,1}}$ (км) при $\Phi = 0^{\circ}, p = 1/3$

λ^{obn}	Зенитный угол Солнца, град					
	20	40	60	80		
	В аэрозоле					
1	7,2 /9,3	8,5 /9,4	8,6 /8,9	7,9 /8,0		
0,99	5,1 /7,2	6,8 /7,7	7,1 /7,5	6,5 /6,5		
0,95	0,8 /1,9	2,1 /2,8	2,6 /3,2	2,3 /2,4		
0,9	0,5 /0,4	0,2 /0,9	0,14 /1,0	0,9 /0,6		
	В облаке					
1	0,5 /2,7	4,9 /0,4	6,4 /5,9	7,1 /7,1		
0,99	2,8 /1,5	4,8 /0,2	6,0 /5,7	6,6 /6,8		
0,95	3,0 /1,0	4,0 /3,0	4,9 /4,6	5,3 /5,5		
0,9	2,6 /1,5	3,3 /2,4	4,2 /3,7	4,4 /4,4		

Таблица 2

Размеры пограничных слоев x^{asp} и $x^{o6.1}$ (км) при $\Phi = 180^{\circ}, p = 1/3$

$\lambda^{o \delta \pi}$	Зенитный угол Солнца, град					
	20	40	60	80		
	В аэрозоле					
1	0,5 /6,1	9,2 /0,2	14,1 /12,4	18,0 /17,7		
0,99	4,0 /2,2	10,4 /0,1	14,5 /12,9	18,2 /17,8		
0,95	8,9 /5,2	12,0 /9,4	15,0 /13,6	18,4 /18,0		
0,9	10,1 /7,4	12,7 /10,4	15,6 /14,0	18,6 /18,0		
	В облаке					
1	2,6 /3,6	2,8 /3,4	2,9 /3,4	2,9 /3,3		
0,99	1,5 /2,6	1,8 /2,4	2,0 /2,4	2,1 /2,2		
0,95	1,1 /0,5	0,2 /0,5	0,2 /0,5	0,2 /0,3		
0,9	1,6 /0,1	1,4 /0,1	1,4 /0,1	1,2 /0,1		

и квазиодномерной 1D-моделям. В приближенной модели используется значение параметра p = 1/3, которое является наилучшим с точки зрения точности оценки в рассматриваемой задаче (см. рис. 3). Значения, стоящие перед косой чертой, получены по 1D-модели, а стоящие после — по 2D-модели.

Можно заключить, что квазиодномерная модель в оценке размеров пограничных слоев в облаке и в аэрозоле обладает достаточной точностью (до 1 км) при больших зенитных углах Солнца. При малых углах ($\Theta_0 = 20^\circ$) ошибка может достигать 3 км. Значительные ошибки (до 10 км) возникают при оценке очень малых пограничных слоев ($\Theta_0 = 40^\circ$).

Полученные с помощью квазиодномерной модели (5), (6) координаты $-x^{aэp}$ и $x^{o6\pi}$ могут быть использованы, в частности, в расчете по двумерной модели (1)–(3). Отметим также, что оба представленных алгоритма могут быть легко обобщены на тот случай, когда граница двух сред криволинейная (как на реальных спутниковых фотографиях).

Заключение

Рассмотрена задача расчета коэффициента яркости отраженного света вблизи локальной горизонтальной неоднородности облачно-аэрозольного слоя, где одномерные модели неприменимы. Для получения детального пространственного распределения коэффициента яркости в окрестности неоднородности предложена двумерная модель, опирающаяся на двумерное уравнение переноса излучения со специальными краевыми условиями.

Численное моделирование краевых эффектов в оптике аэрозоля и облаков

Показано, что край облака существенно меняет распределение фотонов в атмосфере и порождает такие известные физические эффекты, как осветление края облака или затенение аэрозоля вблизи облака в зависимости от геометрии задачи [9, 13–16]. Эти эффекты являются следствием комбинаций многих параметров и могут быть найдены только в рамках многомерных моделей.

Оценку размеров пограничных слоев, в которых влияние этих эффектов на коэффициент яркости существенно, предлагается проводить с помощью квазиодномерного уравнения переноса (результат усреднения исходного двумерного уравнения переноса по высоте в предположении о кусочнолинейной зависимости интенсивности рассеянного света от высоты). Модель позволяет получать оценки размеров пограничных слоев при небольших временных затратах.

А.А. Кохановский благодарит за поддержку фонд немецкого физического общества (N DFG 688/8-1).

Работа выполнена при поддержке Программы фундаментальных исследований № 14 Президиума РАН «Фундаментальные проблемы информатики и информационных технологий».

- 1. *Liou K.N.* An Introduction to Atmospheric Radiation. New York: Academic Press, 2002. 578 p.
- 2. Аристова Е.Н., Гольдин В.Я. Расчет анизотропного рассеяния солнечного излучения в атмосфере (моно-энергетический случай) // Математическое моделирование. 1998. Т. 10. № 9. С. 13–34.
- Kokhanovsky A.A., von Hoyningen-Huene W., Bovensmann H., Burrows J.P. The Determination of the Atmospheric Optical Thickness over Western Europe Using SeaWiFS Imagery // IEEE Trans. Geosci. and Remote Sens. 2004. V. 42. N 4. P. 824–832.
- 4. Kokhanovsky A.A., von Hoyningen-Huene W. Optical Properties of a Hurricane // Atmos. Res. 2004. V. 69. N 3-4. P. 165-183.
- Marshak A., Davis A. Three-Dimensional Radiative Transfer in Cloudy Atmospheres. Berlin: Springer-Verlag, 2005. 686 p.

- 6. Иолтуховский А.А., Мишин И.В., Сушкевич Т.А. Решение уравнения переноса в трехмерно-неоднородном рассенвающем слое методом характеристик // Ж. вычисл. мат. н мат. фнз. 1984. Т. 24. № 1. С. 92–108.
- Журавлева Т.В. Статистическое моделирование распространения солнечной радиации: детерминированная атмосфера и стохастическая облачность: Автореф. дис.... докт. физ.-мат. наук. Томск: Институт оптики атмосферы СО РАН, 2008. 39 с.
- Titov G.A. Radiative Horizontal Transport and Absorption in Stratocumulus Clouds // J. Atmos. Sci. 1998. V. 55. N 15. P. 2549–2560.
- 9. Varnai T., Marshak A. Observations of Three-Dimensional Radiative Effects that Influence MODIS Cloud Optical Thickness Retrievals // J. Atmos. Sci. 2002. V. 59. N 9. P. 1607–1618.
- 10. Nikolaeva O.V., Bass L.P., Germogenova T.A., Kokhanovsky A.A., Kuznetsov V.S., Mayer B. The Influence of Neighbouring Clouds on the Clear Sky Reflectance Studied with the 3–D Transport Code RADUGA // J. Quant. Spectrosc. and Radiat. Transfer. 2005. V. 94. N 3–4. P. 405–424.
- Hulst H.C. van de. Light Scattering by Small Particles. N. Y.: Dover, 1981. 470 p.
- Nikolaeva O.V. Simplified 1D Model to 2D Transport Equation // Proc. of 20th Int. Conf. on Transport Theory. Obninsk, 2007. P. 35–37.
- Kobayashi T., Masuda K., Sasaki M., Mueller J. Monte Carlo Simulations of Enhanced Visible Radiance in Clear-Air Fields of View Near Clouds // J. Geophys. Res. D. 2000. V. 105. N 21. P. 26569–26576.
- 14. Marshak A., Knyazikhin Y., Davis A.B., Wiscombe W.J., Pilewskie P. Cloud-Vegetation Interaction: Use of Normalized Cloud Index for Estimation of Cloud Optical Thickness // Geophys. Res. Lett. 2000. V. 27. N 12. P. 1695–1698.
- Varnai T., Marshak A. A Method for Analyzing How Various Parts of Clouds Influence Each Other's Brightness // J. Geophys. Res. D. 2003. V. 108. N 22. P. 10.1029/2003JD003561.
- 16. Varnai T., Marshak A. Observations of Three-Dimensional Radiative Effects that Influence MODIS Cloud Optical Thickness Retrievals // J. Atmos. Sci. 2002. V. 59. N 9. P. 1607–1618.

L.P. Bass, <u>T.A. Germogenova</u>, O.V. Nikolaeva, A.A. Kokhanovsky, V.S. Kuznetsov. Numerical simulation of boundary effects in optics of aerosols and clouds.

The problem of calculation of brightness coefficient of the solar light reflected by the atmosphere in regions with spatially-local horizontal inhomogeneities (surface of medium discontinuity) is considered in case when usual one-dimensional one-layer model is not applicable. Two-dimensional model allowing a detailed spatial distribution of brightness coefficient in the vicinity of the inhomogeneity is suggested. Typical distributions are obtained via this model. Quasi-one-dimensional model is suggested for operative estimation of a subregion size, where multi-dimensional effects in brightness are essential. Numerical testing of this model is carried out.