А.Д. Быков, Т.М. Кадошникова, Г.Е. Сабинина, В.И. Сердюков, Л.Н. Синица

ПОЛОСА 3v₃ МОЛЕКУЛЫ HD¹⁶O

Зарегистрирован спектр поглощения HD¹⁶O в диапазоне 10280...10770 см⁻¹ на внутрирезонаторном спектрометре с лазером на LiF: F₂⁺-центрах окраски. При идентификации линий определены уровни энергии состояния 003, решена обратная задача, определены вращательные и центробежные постоянные.

Интерес, проявляемый к исследованию спектров высокого разрешения молекулы HD¹⁶O, обусловлен рядом причин. Во-первых, пары HD¹⁶O присутствуют в атмосфере и вносят заметный вклад в поглощение в средней ИК-области. Во-вторых, колебательно-вращательные спектры изотопных модификаций воды представляют дополнительную информацию, необходимую для восстановления параметров внутримолекулярной потенциальной функции, дипольного момента молекулы. И наконец, молекула HD¹⁶O, как и другие изотопомеры воды, принадлежит классу легких асимметричных волчков, имеющих ряд особенностей в энергетическом спектре, и изучение ее высоковозбужденных вращательных и колебательных состояний необходимо для теоретического анализа влияния внутримолекулярных взаимодействий на формирование спектра.

Спектры поглощения HD¹⁶O достаточно подробно изучены в микроволновой, далекой и средней ИК-области, уровни энергии, вращательные и центробежные постоянные представлены в [1-10] для состояний с энергией меньше 9300 см⁻¹. В данной работе приводятся результаты регистрации и анализа спектра поглощения в области 0,94 мкм.

1. Для регистрации спектра поглощения использовался внутрирезонаторный спектрометр на основе LiF: F_2^+ -лазера. Резонатор лазера состоял из плоского (коэффициент отражения 90%) и сферического (коэффициент отражения 99,9%) зеркал, дисперсионной призмы. Использовался активный элемент — кристалл LiF: F_2^+ размерами 4×10×10 мм, общая длина резонатора 60 см. Накачка LiF: F_2^+ лазера осуществлялась по продольной схеме излучением рубинового лазера (длительность квазине прерывной генерации 900 мкс, энергия 3 Дж). Излучение накачки фокусировалось на кристалл с помощью линзы с фокусным расстоянием 20 см. Получена квазинепрерывная генерация длительностью 400 мкс, что обеспечивает чувствительность 10^{-7} см⁻¹. Для устранения поглощения линиями атмосферы применялся вакуумизированный резонатор.

Регистрация спектра генерации лазера осуществлялась спектрографом, собранным на базе автоколлимационной камеры УФ-90 и дифракционной решетки 300 штр/мм. Обратная линейная дисперсия составила 0,1 нм/мм, спектральное разрешение 0,05 см⁻¹.

Первоначально были зарегистрированы в области 0,94 мкм и интерпретированы спектры поглощения $H_2^{16}O$ и $D_2^{16}O$. Молекула HDO не может регистрироваться независимо, поскольку всегда существует равновесная смесь трех изотопов водяного пара:

$H_2O+D_2O \rightleftharpoons 2HDO.$

Поэтому нами регистрировался спектр поглощения равновесной смеси H_2O , D_2O и HDO (общее давление 10 торр, температура 296 K), а присутствующие в спектре линии поглощения основной модификации использовались в качестве реперных, относительно которых положение центров линий HDO измерялось с погрешностью менее 0,05 см⁻¹.

2. Анализ спектра, идентификация линий проводились следующим образом. Предварительно были проведены оценки интегральных интенсивностей, центров полос, вращательных постоянных HD¹⁶O, D₂¹⁶O для полос, попадающих в исследуемый диапазон. Для этого использовались изотопические соотношения [11], оценки ангармонических [12], колебательно-вращательных [13] постоянных, интегральные интенсивности некоторых полос H₂¹⁶O. Для расчета центров полос несимметричной модификации предварительно решалась обратная колебательная задача по имеющимся в литературе экспериментальным данным для 13 полос по методу, изложенному в [12]. Для предварительного расчета вращательных постоянных HD¹⁶O анализировались имеющиеся в литературе данные по колебательно-вращательным уровням энергии молекулы. Для ряда состояний вращательные постоянные не определены, в этом случае решалась обратная задача с уровнями до $J \leq 3$ и находились значения колебательной энергии, постоянных А, В, С, Δ_{κ} . Далее по методу наименыших квадратов, так же как это проведено в [13] для основной модификации, находились колебательно-вращательные постоянные, определяющие зависимость вращательных постоянных от колебательных квантовых чисел. Найденные значения использовались для оценок спектроскопических параметров HD¹⁶O.

Параметр	Значения постоянных	Довери- тельный интервал	
Е	10631.58729	0.021	
A	20,557115	0,0057	
B	9,064763	0,0014	
С	6,168254	0,0010	
$\Delta_{\kappa} \cdot 10^2$	6,81592	0,039	
$\Delta J_{\kappa} \cdot 10^3$	$1,01_{67}$	0,11	
$\Delta J \cdot 10^4$	$3,371_{03}$	0,087	
$\delta_{\kappa} \cdot 10^3$	$3,508_{56}$	0,087	
$\delta_J \cdot 10^4$	$1,023_{85}$	0,044	
$H_{\kappa} \cdot 10^3$	$4,5671_{42}$	0,0075	
$H_{\kappa J} \cdot 10^6$	$-7,1_{89}$	3,3	
$H_{J\kappa} \cdot 10^6$	$2,81_{43}$	0,50	
$H_{J} \cdot 10^{8}$	8,778	2,7	
$h_{\kappa} \cdot 10^4$	2.387_{36}	0,075	

Вращательные и центробежные постоянные состояния 003 HD¹⁶O (в см⁻¹)

Результаты предварительных расчетов позволили определить положение и относительные силы линий в спектре. В исследуемый диапазон 10280...10770 см⁻¹ попадают линии четырех полос HD¹⁶O. Это переходы с основного состояния на состояния 003, 211, 131 и 051. Линии поглощения D₂¹⁶O могут принадлежать трем полосам, соответствующим переходам на 103, 202, 301. Кроме того, в этот же диапазон попадают линии полос v₁+2v₃, 2v₁+v₃, v₁+2v₂+v₃ основного изотопа. Наиболее сильной полосой молекулы D₂¹⁶O в указанном спектральном районе является полоса

Наиболее сильной полосой молекулы D_2^{10} О в указанном спектральном районе является полоса $3v_1+v_3$ с центром 10371 см⁻¹, полоса $3v_1+v_3$ на порядок слабее, полоса $2v_1+2v_3$ еще слабее. Наиболее сильными полосами HD¹⁶O являются $3v_3$ и с центром 10623 см⁻¹ и $2v_1+v_2+v_3$ около 10399 см⁻¹, линии полос $v_1+3v_2+v_3$, $5v_2+v_3$ очень слабые и, по-видимому, в спектре не проявляются. Таким образом, в спектрах исследуемых образцов в диапазоне 10280...10770 см⁻¹ следует в первую очередь интерпретировать линии полосы $3v_3$ HD¹⁶O.

Идентификация линий проводилась методом комбинационных разностей нижнего состояния. Уровни энергии основного колебательного состояния рассчитывались по спектроскопическим параметрам из [1]. Одновременно с идентификацией линий решалась обратная задача, уточнялись вращательные и центробежные постоянные состояния 003 HD¹⁶O, что позволяло более точно оценить положение линий с большими значениями квантового числа углового момента в спектре и контролировать отнесение линий. По результатам идентификации определялись энергетические уровни как среднее арифметическое по нескольким линиям, а также среднеквадратическая ошибка.

3. В результате анализа спектра найдено 111 уровней энергии для состояния 003 HD¹⁶O, соответствующих $J \le 15$ и $K_a \le 6$, с точностью от 0.01 до 0,06 см⁻¹, причем для большинства уровней среднеквадратическая ошибка не превышает 0,03 см⁻¹. Как правило, уровень определялся по тремчетырем линиям, в отдельных случаях по шести. При этом использовались только те линии поглощения HD¹⁶O, центры которых не перекрываются с линиями основной изотопной модификации.

Предварительный анализ показал, что колебательное состояние 003 является изолированным и возможными резонансами можно пренебречь. Действительно, ближайшие по значению колебательной энергии состояния молекулы 211 и 131 (отстоящие от 003 более чем на 150 см⁻¹) дают большое суммарное изменение колебательных квантовых чисел, так что ведущие члены недиагонального матричного элемента, который мог бы вызвать резонанс, определяются пентичными и секстичными ангармоническими постоянными. В то же время матричные элементы, соответствующие резонансам Кориолиса и Ферми, связывают с исследуемыми состояниями, отстоящими на 700 и более обратных сантиметров. Вследствие этого для определения вращательных и центробежных постоянных использовалась безрезонансная модель — гамильтониан Уотсона [14]:

$$H = E + \left(A - \frac{B+C}{2}\right)J_{z}^{2} + \frac{B+C}{2}J^{2} + \frac{B-C}{2}J_{xy}^{2} - \lambda_{\kappa}J_{z}^{1} - \lambda_{J\kappa}J^{2}J_{z}^{n} - \lambda_{J\kappa}J^{2}J_{z}^{n$$

где

$$J^2 = J_x^2 + J_y^2 + J_z^2; \ J_{xy}^2 = J_x^2 - J_y^2; \ \{A, B\} = AB + BA.$$

Уровни энергии состояния 003	$HD^{16}O$ (B cm ⁻¹)
------------------------------	----------------------------------

J	Ka	Kc	Еәкеп	Евыч	J	Ka	Kc	Еэксп	Евыч
$\begin{array}{c} 0 \\ 1 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2$	$\begin{array}{c} 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 1 \\ 2 \\ 2 \\ 0 \\ 1 \\ 1 \\ 2 \\ 2 \\ 3 \\ 3 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 3 \\ 4 \\ 4 \\ 0 \\ 1 \end{array}$	$\begin{array}{c} 0 \\ 1 \\ 1 \\ 0 \\ 2 \\ 2 \\ 1 \\ 1 \\ 0 \\ 3 \\ 3 \\ 2 \\ 2 \\ 1 \\ 1 \\ 0 \\ 4 \\ 4 \\ 3 \\ 3 \\ 2 \\ 2 \\ 1 \\ 1 \\ 0 \\ 5 \\ 5 \end{array}$	10631,65 10646,87 10658,17 106658,17 10665,74 10694,40 10728,23 10728,72 10720,64 10726,82 10744,09 10773,92 10776,22 10837,36 10837,38 10777,37 10781,13 10809,54 10834,33 10840,83 10898,93 10898,93 10898,93 10898,93 10898,93 10898,35	10631,59 10646,82 10658,25 10661,13 10676,79 10685,82 10694,47 10728,21 10728,69 10720,61 10726,89 10744,11 10773,85 10776,18 10837,38 10837,38 10837,43 10777,30 10781,16 10809,56 10834,30 10840,78 10899,33 10992,12 10992,12 10992,12 10846,20 10848,36	555555556666666666666677777	$1 \\ 2 \\ 2 \\ 3 \\ 3 \\ 4 \\ 4 \\ 5 \\ 5 \\ 0 \\ 1 \\ 1 \\ 2 \\ 2 \\ 3 \\ 3 \\ 4 \\ 4 \\ 5 \\ 5 \\ 6 \\ 6 \\ 0 \\ 1 \\ 1 \\ 2 \\ 2 \\ 3 \\ 3 \\ 4 \\ 4 \\ 5 \\ 5 \\ 6 \\ 6 \\ 0 \\ 1 \\ 1 \\ 2 \\ 2 \\ 3 \\ 3 \\ 4 \\ 4 \\ 5 \\ 5 \\ 6 \\ 6 \\ 0 \\ 1 \\ 1 \\ 2 \\ 2 \\ 3 \\ 3 \\ 4 \\ 4 \\ 5 \\ 5 \\ 6 \\ 6 \\ 0 \\ 1 \\ 1 \\ 2 \\ 2 \\ 3 \\ 3 \\ 4 \\ 4 \\ 5 \\ 5 \\ 6 \\ 6 \\ 0 \\ 1 \\ 1 \\ 2 \\ 2 \\ 3 \\ 3 \\ 4 \\ 4 \\ 5 \\ 5 \\ 6 \\ 6 \\ 0 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 3 \\ 3 \\ 4 \\ 4 \\ 5 \\ 5 \\ 6 \\ 6 \\ 0 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 3 \\ 3 \\ 4 \\ 4 \\ 5 \\ 5 \\ 6 \\ 6 \\ 0 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 3 \\ 3 \\ 4 \\ 4 \\ 5 \\ 5 \\ 6 \\ 6 \\ 0 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 3 \\ 3 \\ 4 \\ 4 \\ 5 \\ 5 \\ 6 \\ 6 \\ 0 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 3 \\ 3 \\ 4 \\ 4 \\ 5 \\ 5 \\ 6 \\ 6 \\ 0 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 3 \\ 3 \\ 4 \\ 4 \\ 5 \\ 5 \\ 6 \\ 6 \\ 0 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 3 \\ 3 \\ 4 \\ 4 \\ 5 \\ 5 \\ 6 \\ 6 \\ 0 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2$	$\begin{array}{c} 4\\ 4\\ 4\\ 3\\ 3\\ 2\\ 2\\ 1\\ 1\\ 0\\ 6\\ 6\\ 5\\ 5\\ 4\\ 4\\ 3\\ 3\\ 2\\ 2\\ 1\\ 1\\ 0\\ 7\\ 7\\ 6\\ 6\\ 5\end{array}$	$\begin{array}{c} 10890,05\\ 10909,27\\ 10922,89\\ 10976,11\\ 10977,52\\ 11069,05\\ 11211,62\\ 11211,62\\ 10927,12\\ 10928,16\\ 10984,63\\$	$\begin{array}{c} 10890,06\\ 10909,22\\ 10922,76\\ 10976,09\\ 10977,46\\ 11068,99\\ 10069,03\\ 11211,64\\ 11211,65\\ 10927,11\\ 10928,25\\ 10984,59\\ 10998,23\\ 11021,82\\ 11068,64\\ 11072,49\\ 11161,53\\ 11161,71\\ 11303,58\\ 11303,58\\ 11540,21\\ 11540,21\\ 11540,21\\ 11540,21\\ 11540,21\\ 11540,21\\ 11540,21\\ 11020,63\\ 11092,02\\ 11100,89\\ 11137,26\\ \end{array}$
77777778888888888889999999999999	$\begin{array}{c} 3 \\ 3 \\ 4 \\ 4 \\ 5 \\ 5 \\ 6 \\ 6 \\ 0 \\ 1 \\ 1 \\ 2 \\ 2 \\ 3 \\ 3 \\ 4 \\ 5 \\ 6 \\ 0 \\ 1 \\ 1 \\ 2 \\ 2 \\ 3 \\ 3 \\ 4 \\ 4 \\ \end{array}$	$5 \\ 4 \\ 4 \\ 3 \\ 3 \\ 2 \\ 2 \\ 1 \\ 8 \\ 8 \\ 7 \\ 7 \\ 6 \\ 6 \\ 5 \\ 4 \\ 4 \\ 3 \\ 9 \\ 9 \\ 8 \\ 8 \\ 7 \\ 7 \\ 6 \\ 6 \\ 5 \\ 4 \\ 4 \\ 3 \\ 9 \\ 9 \\ 8 \\ 8 \\ 7 \\ 7 \\ 6 \\ 6 \\ 5 \\ 5 \\ 4 \\ 4 \\ 3 \\ 9 \\ 9 \\ 8 \\ 8 \\ 7 \\ 7 \\ 6 \\ 6 \\ 5 \\ 5 \\ 6 \\ 5 \\ 5 \\ 7 \\ 6 \\ 6 \\ 5 \\ 7 \\ 6 \\ 6 \\ 5 \\ 7 \\ 7 \\ 6 \\ 6 \\ 7 \\ 7 \\ 6 \\ 6 \\ 7 \\ 7$	$\begin{array}{c} 11176,30\\ 11184,94\\ 11269,67\\ 11270,47\\ 11410,96\\ 11647,04\\ 11410,96\\ 11647,04\\ 11425,13\\ 11125,13\\ 11125,42\\ 11211,53\\ 11268,05\\ 11299,12\\ 11315,63\\ 11395,62\\ 11534,16\\ 11769,27\\ 11242,32\\ 11242,32\\ 11242,59\\ 11345,64\\ 11413,23\\ 11436,21\\ 11463,81\\ 11533,60\\ 11538,07\\ \end{array}$	$\begin{array}{c} 11176,39\\ 11185,09\\ 11269,82\\ 11270,46\\ 11411,08\\ 11411,10\\ 11647,05\\ 11470,05\\ 11125,11\\ 11125,39\\ 11211,50\\ 11216,82\\ 11268,14\\ 11299,03\\ 11315,61\\ 11395,71\\ 11534,25\\ 11769,28\\ 11242,31\\ 11242,45\\ 11342,64\\ 11345,63\\ 11413,32\\ 11436,14\\ 11463,84\\ 11538,07\\ 11538,07\\ \end{array}$	$\begin{array}{c} 9\\ 9\\ 9\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10$	55 0 1 1 2 2 3 3 4 4 5 0 1 1 2 3 3 4 5 0 1 1 2 2 0 1 2 0 1 2 0 1 1 0 1	$\begin{array}{c} 5\\ 4\\ 10\\ 10\\ 9\\ 9\\ 8\\ 8\\ 7\\ 7\\ 6\\ 6\\ 11\\ 10\\ 9\\ 8\\ 7\\ 7\\ 12\\ 12\\ 11\\ 10\\ 13\\ 12\\ 14\\ 13\\ 12\\ 14\\ 13\\ 15\\ 15\\ \end{array}$	$\begin{array}{c} 11673,28\\ 11673,49\\ 11371,68\\ 11371,68\\ 11485,45\\ 11487,00\\ 11571,54\\ 11587,27\\ 11629,11\\ 11688,99\\ 11698,24\\ 11827,99\\ 11513,13\\ 11513,13\\ 11513,13\\ 11513,13\\ 11639,96\\ 11640,74\\ 11751,91\\ 11810,48\\ 11876,43\\ 11998,70\\ 11666,85\\ 11666,85\\ 11666,85\\ 11666,85\\ 11806,24\\ 11923,66\\ 11832,60\\ 11832,60\\ 11832,60\\ 11832,60\\ 11984,70\\ 12010,50\\ 12010,50\\ 12010,50\\ 12010,50\\ 12010,50\\ 12010,50\\ 12174,58\\ 12200,34\\$	$\begin{array}{c} 11673,20\\ 11673,40\\ 11371,66\\ 11371,73\\ 11485,41\\ 11487,02\\ 11571,61\\ 11587,25\\ 11629,08\\ 11689,01\\ 11698,19\\ 11828,00\\ 11513,21\\ 11513,13\\ 11639,92\\ 11640,77\\ 11751,88\\ 11813,40\\ 11876,54\\ 11998,71\\ 11666,82\\ 11666,83\\ 11806,27\\$

Полученные в результате решения обратной задачи параметры гамильтониана, а также 68%-ные доверительные интервалы приведены в табл. 1. В табл. 2 представлены найденные из частот переходов и рассчитанные с параметрами уравнения уровни энергии. В первых трех графах табл. 2 приведены квантовые числа J, K_a, K_c, в четвертой экспериментальные уровни, в последней — результаты расчета.

товые числа *J*, *K*_a, *K*_c, в четвертой экспериментальные уровни, в последней — результаты расчета. Из данных, приведенных в табл. 2, видно, что согласие вычисленных и найденных из спектра энергетических уровней вполне удовлетворительное — стандартное отклонение составляет 0,06 см⁻¹, в целом воспроизведение экспериментальных уровней характеризуется следующими соотношениями ($\delta = |E_{\text{вксп}} - E_{\text{выч}}|$):

δ≪0,03	$\rm cM^{-1}$	для	49,1%	всех	уровней
0,03<δ≪0,06	,,	,,	22,3%	,,	,,
0,06<δ≤0,09	,,	.,	22,3%	"	"
0,09<δ	,,	,,	6,3	"	,,

Данные табл. 1 и 2 представляют энергетическую структуру наиболее высокого из известных колебательных состояний ${\rm HD^{16}O}$.

Messer J.K., De Lucia F.C., Helminger P. //J. Mol. Spectrosc. 1984. V. 105. P. 139.
Benedict W.S., Gailar N., Plyler E.K. //J. Chem. Phys. 1959. V. 24. P. 1139.
Johns J.W.S. //J. Opt. Soc. Am. 1985. V. B2. P. 1340.
Toth R.A., Gupta V.D., Brault J.W. //Appl. Opt. 1982. V. 21. P. 3337.
Toth R.A., Brault J.W. //Appl. Opt. 1983. V. 22. P. 908.
Perrin A., Flaud J.-M.. Camy-Peyret C. //J. Mol. Spectrosc. 1985. V. 112. P. 153.
Perrin A., Camy-Peyret C., Flaud J.-M. //Can. J. Phys. 1986. V. 64. P. 736.
Bykov A.D., Lopasov V.P., Makushkin Yu.S. et all. //J. Mol. Spectrosc. 1982. V. 94. P. 1.
Bykov A.D., Makushkin Yu.S., Serdyukov V.I. et al. //J. Mol. Spectrosc. 1984. V. 105. P. 397.
Papineau N., Camy-Peyret C., Flaud J.-M. //J. Mol. Spectrosc. 1982. V. 92. P. 451.
Быков А.Д., Макушкин Ю.С., Улеников О.Н. Изотопозамещение в многоатомных молекулах. Новосибирск: Наука, 1985.
Быков А.Д., Макушкин Ю.С., Улеников О.Н. //Оптика и спектроскопия. 1984. T. 56. C. 425.
Быков В.Н., Быков А.Д., Макушкин Ю.С. и др. //Оптика и спектроскопия. 1983. T. 54. C. 916.
Watson J.K.G. //J. Chem. Phys. 1967. V. 46. P. 1935.

Институт оптики атмосферы АН СО СССР, Томск

Поступила в редакцию 26 апреля 1989 г.

A.D. Bykov, T.M. Kadoshni'kova, G.E.Sabinina, V.I. Serdyukov, L.N. Sinitsa. The $3v_3$ Band of HD¹⁶O Molecule.

The spectrum of HD¹⁶O in the range 10280 to 10770 cm⁻¹ was recorded using a color-center LiF: F_2^+ laser intracavity spectrometer. Interpretation of the spectral lines observed yielded the determination of the 003 state energy levels and the solution of inverse problem. As a result the rotational and centrifugal constants were determined.