О.В. Науменко, Е.Р. Половцева

Колебательный спектр молекулы сероводорода

Институт оптики атмосферы СО РАН, г. Томск

Поступила в редакцию 13.09.2004 г.

На основе расширенного набора экспериментальных данных решена обратная задача и восстановлены параметры эффективного колебательного гамильтониана молекулы H₂S. В эффективном гамильтониане учтены резонансные взаимодействия типа Дарлинга–Деннисона, а также слабый резонанс Ферми. Из подгонки к 52 экспериментальным уровням энергии определены 25 колебательных констант, которые воспроизводят исходные данные с точностью 0,03 см⁻¹.

Введение

Экспериментальные и теоретические исследования колебательно-вращательных (КВ) спектров сероводорода вызывают постоянный интерес в значительной степени благодаря тому, что молекула H_2S близка к пределу локальных мод, который характеризуется высокой степенью локализации валентных колебаний. В связи с этим колебательно-вращательный спектр H_2S имеет необычный характер при высоком возбуждении валентных колебаний. В частности, вращательная структура спектра локально-модовой пары становится подобной структуре спектра молекулы симметрии C_s , а уровни энергии образуют четырехкратные кластеры [1, 2].

Надежный расчет колебательного спектра позволяет проследить эволюцию локально-модовых эффектов в H₂S при возрастании энергии возбуждения, он необходим также для идентификации экспериментальных спектров поглощения сероводорода. Колебательный спектр молекулы H₂S моделировался в рамках различных подходов во многих работах, подробный обзор которых приведен в [3].

В работах [3, 4] расчет колебательного спектра H_2S был осуществлен на основе эффективного гамильтониана, предложенного в [5]. Параметры гамильтониана были восстановлены с использованием всей имеющейся в распоряжении экспериментальной информации. Вместе с тем в последнее время

появились новые экспериментальные данные по центрам высоковозбужденных KB-полос H_2S [6–9], которые приведены в табл. 1. Как видно из табл. 1, ошибка предсказания новых центров KB-полос H_2S по данным работ [1, 10, 11] достигает нескольких обратных сантиметров. Наш предыдущий расчет [3], основанный на использовании самого полного набора исходной экспериментальной информации, оказался значительно лучше в предсказании, чем цитируемые работы, однако, как видно из табл. 1, он нуждается в корректировке.

Результаты и их обсуждение

Для моделирования колебательного спектра H₂S использовался, как и ранее, эффективный колебательный гамильтониан [5]:

 $H = \sum_{i,j} H_{ij} |i\rangle \langle j|,$

гле

$$\begin{split} H_{ii} &= \sum_{\lambda} \omega_{\lambda} \bigg(v_{\lambda}^{i} + \frac{1}{2} \bigg) + \sum_{\lambda,\mu \geq \lambda} x_{\lambda\mu} \bigg(v_{\lambda}^{i} + \frac{1}{2} \bigg) \bigg(v_{\mu}^{i} + \frac{1}{2} \bigg) + \\ &+ \sum_{\lambda,\mu \geq \lambda,\nu \geq \mu} y_{\lambda\mu\nu} \bigg(v_{\lambda}^{i} + \frac{1}{2} \bigg) \bigg(v_{\mu}^{i} + \frac{1}{2} \bigg) \bigg(v_{\nu}^{i} + \frac{1}{2} \bigg) + \\ &\sum_{\lambda,\mu \geq \lambda,\nu \geq \mu,\eta \geq \nu} z_{\lambda\mu\nu\eta} \bigg(v_{\lambda}^{i} + \frac{1}{2} \bigg) \bigg(v_{\mu}^{i} + \frac{1}{2} \bigg) \bigg(v_{\nu}^{i} + \frac{1}{2} \bigg) \bigg(v_{\eta}^{i} + \frac{1}{2} \bigg) + \dots \,, \end{split}$$

Таблица 1

Точность предсказания колебательных уровней энергии молекулы H₂³²S различными методами

$v_1 v_2 v_3$	$E_{ m эксп}, \ { m cm}^{-1}$	$\Delta E^*, \ \mathrm{cm}^{-1}$								
		данная работа	[3]	[10]	[1]	[11]				
012	6385,299	0,008	0,122	-1,199	0,591	0,601				
220	7419,916	-0,027	-0,083	-3,316	0,114	0,284				
131	8539,561	-0,015	-0,133	-4,961	-0,631	-5,561				
230	8539,925	0,016	-0,253	-5,361	0,005	-5,725				
141	9647,167	0,012	-0,353	-7,267	-2,107	-16,567				
221	9806,667	-0,004	-0,206	-2,267	-1,297	3,933				
122	9806,733	0,05	-0,159	-2,333	-1,233	3,867				

$$\Delta E = E_{\rm эксп} - E_{\rm расч}$$

Колебательный спектр молекулы сероводорода

4. Оптика атмосферы и океана, № 11.

895

$$\begin{split} H_{ij} &= \left\{ \Gamma_{DD} + \gamma_2 \bigg(v_2 + \frac{1}{2} \bigg) \right\} \times \\ \times \left\{ \bigg(v_1 + \frac{1}{2} \pm \frac{1}{2} \bigg) \bigg(v_1 + \frac{1}{2} \pm \frac{3}{2} \bigg) \bigg(v_3 + \frac{1}{2} \pm \frac{3}{2} \bigg) \bigg(v_3 + \frac{1}{2} \pm \frac{1}{2} \bigg) \right\}^{1/2}, \\ &|i\rangle = |v_1 v_2 v_3\rangle, \quad |j\rangle = |v_1 \pm 2 \ v_2 \ v_3 \pm 2\rangle, \\ H_{ij} &= F \left\{ \bigg(v_1 + \frac{1}{2} \pm \frac{1}{2} \bigg) \bigg(v_2 + \frac{1}{2} \pm \frac{1}{2} \bigg) \bigg(v_2 + \frac{1}{2} \pm \frac{3}{2} \bigg) \right\}^{1/2}, \\ &|i\rangle = |v_1 v_2 v_3\rangle, \quad |j\rangle = |v_1 \pm 1 \ v_2 \pm 2 \ v_3\rangle. \end{split}$$

В качестве начального приближения был взят набор параметров колебательного гамильтониана, полученный авторами [3]. Всего в подгонку были включены 52 экспериментальных колебательных уровня энергии с учетом семи новых уровней, представленных в табл. 1. Надо отметить, что колебательные энергии состояний (012) и (230) — 6385,299 и 8539,925 см⁻¹ соответственно, получены не непосредственно из эксперимента, поскольку соответствующие переходы

 $0_{00}-1_{11}$ отсутствовали в спектре, а были восстановлены из подгонки к имеющимся в наличии экспе-

риментальным уровням. Точность определения указанных колебательных энергий составляет 0,02 см⁻¹.

Для восстановления исходных данных с высокой точностью 0,03 см⁻¹ потребовалось варьирование трех дополнительных (относительно набора из [3]) параметров — Y_{112} , Y_{223} , Z_{1222} , ответственных за учет ангармонических эффектов, связанных с возбуждением изгибного колебания. Полный набор параметров колебательного гамильтониана представлен в табл. 2.

Экспериментальные и расчетные колебательные уровни энергии приведены в табл. З вместе с их колебательной идентификацией по методу нормальных и локальных мод.

В 5-й и 11-й графах табл. З даны ссылки на источники экспериментальных данных. Экспериментальные уровни энергии, помеченные «звездочкой», принадлежат темным состояниям и не включены в подгонку. Отклонение от расчета для таких уровней достигает 3,3 см⁻¹, причем, по нашему мнению, расчет является более точным, чем экспериментальная колебательная энергия, грубо оцененная либо из отдельных КВ-уровней энергии, либо из резонансного взаимодействия соответствующего «темного» состояния со «светлым» состоянием.

Таблица 2

Постоянные эффективного	о колебательного	гамильтониана	молекулы	H ₂ ³² S,	cm^{-1}
-------------------------	------------------	---------------	----------	---------------------------------	--------------------

Параметр	Значение	Параметр	Значение	Параметр	Значение
ω1	2719,936(240)	$y_{111} \cdot 10$	-1,539(420)	$z_{1111} \cdot 100$	2,921(370)
ω_2	1212,9385(710)	$y_{112} \cdot 10$	2,958(610)	$z_{1112} \cdot 100$	-8,02(100)
ω_3	2735,8186(810)	$y_{113} \cdot 10$	4,113(210)	$z_{1133} \cdot 10$	-1,2659(500)
		y_{123}	-1,0681(140)	$z_{1222} \cdot 1000$	-5,30(150)
x_{11}	-24,232(160)	$y_{133} \cdot 10$	8,373(400)	$z_{1333} \cdot 10$	-1,0892(560)
x_{12}	-17,591(110)	$y_{222} \cdot 100$	-6,124(260)	$z_{2333} \cdot 100$	-6,622(210)
x_{13}	-96,725(120)	$y_{223} \cdot 100$	8,57(110)		
x_{22}	-5,3411(240)	0		Γ_{DD}	-23,39195(320)
x_{23}	-21,1302(470)			$F \cdot 10$	5,670(320)
x_{33}	-24,4079(190)			$\gamma_2 \cdot 10$	-2,5634(300)
				•-	

Примечание. В скобках приведены 68%-е доверительные интервалы в единицах последней значащей цифры.

Таблица З

Экспериментальные и расчетные колебательные уровни энергии молекулы H₂³²S, см⁻¹

Нор- мальные моды $v_1 v_2 v_3$	Локальные моды mn ± ,v	$E_{ m pac^{q}},\ { m cm}^{-1}$	$E_{ m эксп},$ см $^{-1}$	Ссылка	Эксп.— расч., см ⁻¹ · 10 ⁻³	Нормаль- ные моды $v_1 v_2 v_3$	Локальные моды mn ± ,v	$E_{ m pacy},\ { m cm}^{-1}$	$E_{ m эксп}, \ { m cm}^{-1}$	Ссылка	Эксп.— расч., см ⁻¹ · 10 ⁻³
1	2	3	4	5	6	7	8	9	10	11	12
010	00+,1	1182,562	1182,5770	[14]	14	031	10–,3	6077,594	6077,5954	[4]	2
020	00+, 2	2353,951	2353,9644	[4]	14	210	20+, 1	6288,178	6288,1462	[4]	-32
100	10+,0	2614,401	2614,4080	[4]	7	1 1 1	20-,1	6289,184	6289,1735	[4]	-10
001	10-,0	2628,421	2628,4551	[4]	34	012	11+, 1	6385,291	6385,2990	[7]	8
030	00+,3	3513,783	3513,7900	[4]	7	060	00+,6	6920,104			
1 1 0	10+, 1	3779,158	3779,1665	[4]	8	041	10-,4	7204,290			
011	10-,1	3789,276	3789,2688	[4]	-7	140	10+,4	7204,435			
040	00+,4	4661,674	4661,6770	[4]	3	220	20+,2	7419,943	7419,9160	[8]	-27
120	10+, 2	4932,692	4932,6992	[4]	7	121	20-,2	7420,111	7420,0923	[4]	-19
021	10-,2	4939,127	4939,1044	[4]	-23	022	11+,2	7516,795			
200	20+,0	5144,979	5144,9862	[4]	7	102	30+,0	7576,432	7576,3816	[4]	-50
101	20-,0	5147,201	5147,2205	[4]	19	201	30-,0	7576,529	7576,5450	[4]	16
002	11+,0	5243,117	5243,1014	[4]	-16	300	21+,0	7752,211	7752,2644	[4]	53
050	00+,5	5797,243	5797,2350	[4]	-8	003	21-,0	7779,298	7779,3195	[4]	22
130	10+,3	6074,589	6074,5823	[4]	-7	070	00+,7	8029,877			

Науменко О.В., Половцева Е.Р.

Окончание табл. З

1	ე	3	4	5	6	7	8	9	10	11	12
0.5.1	10 5	8318 834	4	5	0	310	50± 1	13222 741	10	191	26
150	10-, 5	0310,034				024	30+,1 21+2	13222,741	L	10]	20
121	10+,3	8520 576	8520 5610	101	15	034	217,3	13430,347			
131	20-,5	8539,370	8520 0250	[9]	-15	420	31-,3 33 - 3	13401,033			
230	$20\pm, 5$	8539,909	8539,9230	[9]	10	430	22+,5	12601 262			
112	11+,3 20+ 1	8037,107	8607 1420	[9]	5	114	41 + 1	12601,302			
112	50+,1	8097,147	8097,1420	[4]	-3	411	41-,1	13001,979			
211	30-,1	8697,170	8697,1550	[4]	-15	510	32+,1	13781,983			
310	21+,1	8878,383				015	32-,1	13802,386			10
013	21–,1	8896,894				322	50+,2	14284,724	14284,7050 [19]	-19
061	10–,6	9420,842				223	50-,2	14284,728	14284,7050 [19]	-23
160	10+,6	9426,309				303	60-,0	14291,157	14291,1220	19]	-35
141	20-,4	9647,155	9647,1670	[6]	12	4 0 2	60+,0	14291,161	14291,1220 [19]	-39
042	20+,4	9647,723				124	41+,2	14666,948			
$2\ 4\ 0$	11+,4	9745,927				421	41-,2	14667,503			
221	30–,2	9806,671	9806,6670	[6]	-4	105	51–,0	14761,726			
122	30+,2	9806,683	9806,7330	[6]	50	204	51+,0	14761,815			
301	40-,0	9911,033	9911,0230	[4]	-10	520	32+,2	14855,009			
202	40+,0	9911,062	9911,0230	[4]	-39	025	32–,2	14862,216			
320	21+,2	9993,536				$6 \ 0 \ 0$	42+,0	15041,462			
023	21-,2	10003,864				501	42-,0	15044,735			
$0\ 0\ 4$	31+,0	10188,329	10188,3010	[4]	-28	006	33+,0	15144,776			
103	31–,0	10194,455	10194,4480	[4]	-7	332	50+,3	15334,423			
400	22+,0	10292,272				233	50-,3	15334,431			
151	20-,5	10742,441				313	60-,1	15339,782			
052	20+,5	10743,032				412	60+, 1	15339,784			
250	11+,5	10842,595				134	41+,3	15721,005			
231	30–,3	10904,618	10905,790*	[15]		431	41-,3	15721,308			
132	30+,3	10904,640	10905,790*	[15]		115	51–,1	15812,776			
311	40-,1	11008,661	11008,6840	[15]	23	214	51+, 1	15812,886			
212	40+, 1	11008,689	11008,6840	[15]	-5	035	32–,3	15911,614			
330	21+,3	11097,163	11097,1610	[15]	-2	530	32+,3	15916,667			
033	21-,3	11099,793	11102,215*	[15]		610	42+, 1	16095,653			
014	31+,1	11290,469				511	42-,1	16098,937			
113	31-,1	11294,451				016	33+,1	16194,038			
410	22+.1	11390,260				403	700	16334,153	16334,1620	31	9
241	304	11990,601				304	70+.0	16334.157	16334,1620 I	31	5
142	30+4	11990.629				323	60+.2	16378.263		~1	
321	40-2	12095,186				422	60 - 2	16378,263			
222	40+2	12095 213				125	51-2	16852 727			
203	50-0	121/9 /39	12149 4580	[16]	19	224	51 + 2	16852 863			
200	50-,0 50 ± 0	12140,400	12140,4580	[16]	16	2 2 4 2 0 5	61-0	16901 402			
0 4 3	20 1 ,0	1018/ 060	12145,4500	[10]	10	205	61 ± 0	16001,492			
043	21-,4	12104,203				100	01+,0	17126 605			
024	21+,4 21+ 2	12100,777				521	427,2	17130,003			
024	31+,2	12360,396				521	42-,2	17142,734			
123	31-,2	12303,072	17401 0474	[17]		020	53+,2	17233,303			
420	22+,2	124/8,301	12401,04/*	[1/] [47]	10	502	52+,0	17278,965			
104	41+,0	12524,016	12524,0280	[1/]	12	001	52-,0	17280,152			
401	41-,0	12525,192	12525,2020	[17]	10	314	70+,1	1/354,152			
500	32+,0	12698,191				413	70-,1	1/354,152			
005	32–,0	12732,567	10100 0001			700	43+,0	17457,191			
133	40–,3	13170,187	13169,668*	[18]		007	43–,0	17483,180			
232	40+,3	13170,212	13169,668*	[18]		1 1 6	61–,1	17925,230			
213	50—,1	13222,733	13222,7670	[18]	34	215	61+, 1	17925,230			

 Π р и м е ч а н и е . Звездочкой отмечены экспериментальные уровни энергии, полученные из анализа «темных» состояний и не включенные в подгонку.

В работе [12] осуществлен анализ спектра поглощения сероводорода в области 8500-8900 см⁻¹. Из подгонки к наблюдаемым КВ-уровням энергии были определены спектроскопические параметры шести колебательных состояний, четыре из которых являлись «темными». При этом в [12] не было найдено ни одного экспериментального уровня энергии для «темных» состояний. Начальные значения колебательных энергий «темных» состояний были взяты из работы [1]. Эти значения остались фиксированными для состояний (310) и (013) (8877,73 и 8898,66 см⁻¹ соответственно), а для состояний (032) и (230) они были уточнены из подгонки и составили 8629,940 и 8535,03 см⁻¹ соответственно. Однако новые оценки колебательных энергий (032) и (230) из работы [12] отклоняются на величину до 7 см⁻¹ от значений, полученных в [1, 9] и данной работе, причем три последних расчета находятся в хорошем согласии друг с другом, что позволяет сделать заключение о том, что данные [12] определены с грубыми погрешностями. Причиной отмеченных погрешностей явилось, безусловно, отсутствие в [12] экспериментальной информации для высоковозбужденных КВ-состояний (032) и (230).

Заключение

Полученные в работе параметры эффективного колебательного гамильтониана позволяют восстанавливать все известные экспериментальные данные по колебательным уровням энергии молекулы сероводорода с высокой точностью 0,03 см⁻¹. Используемый в работе набор экспериментальных данных является самым полным и точным и может быть рекомендован как исходная информация для моделирования колебательного спектра H₂S другими теоретическими методами. На основе полученных параметров рассчитан колебательный спектр молекулы H₂S в широком спектральном диапазоне. Проведенный анализ показал, что точность расчета колебательного спектра молекулы сероводорода на основе простого метода эффективного гамильтониана сравнима с точностью, достигаемой при использовании более общих и трудоемких методов восстановления поверхности потенциальной энергии [1, 13].

Работа выполнена при финансовой поддержке РФФИ (гранты № 02-07-90139в и 02-03-32512) и INTAS (грант 03-51-3394).

- Kozin I.N., Jensen P. Fourfold clusters of rovibrational energy levels of H₂S studied with a potential energy surface derived from experiment // J. Mol. Spectrosc. 1994. V. 163. P. 482–509.
- Child M.S., Naumenko O.V., Smirnov M.A., Brown L.R. Local mode axis tilting in H₂S // Mol. Phys. 1997. V. 92. P. 885–893.
- Naumenko O., Campargue A. H₂³²S: First observation of the (70[±], 0) Local mode pair and updated global effective vibrational Hamiltonian // J. Mol. Spectrosc. 2001. V. 210. P. 224–232.
- 4. Bykov A., Naumenko O., Smirnov M., Sinitsa L., Brown L.R., Crisp J., Crisp D. The infrared spectrum of H₂S from 1 to 5 μm // Can. J. Phys. 1994. V. 72. P. 989–1000.

- Bykov A.D., Makushkin Yu.S., Ulenikov O.N. The vibrational analysis of H₂O // J. Mol. Spectrosc. 1983. V. 99. P. 221–227.
- 6. Ding Y., Naumenko O., Hu S.-M., Zhu Q., Bertseva E., Campargue A. The absorption spectrum of H₂S between 9540 and 10000 cm⁻¹ by intracavity laser absorption spectroscopy with a vertical external cavity surface emitting laser // J. Mol. Spectrosc. 2003. V. 217. P. 222–238.
- 7. Brown L.R., Naumenko O.V., Polovtseva E.R., Sinitsa L.N. Hydrogen sulphide absorption spectrum in the 5700–6600 cm⁻¹ spectral region // SPIE. Proc. 6–11 July, 2003. Krasnojarsk, Russia. V. 5311. P. 59–67.
- Brown L.R., Naumenko O.V., Polovtseva E.R., Sinitsa L.N. Absorption spectrum of H₂S between 7200 and 7890 cm⁻¹ // SPIE. Proc. 24–28 June, 2003. Tomsk, Russia. V. 5396. P. 42–48.
- 9. Brown L.R., Naumenko O.V., Polovtseva E.R., Sinitsa L.N. Hydrogen sulphide absorption spectrum in the 8400–8900 cm⁻¹ spectral region // SPIE. Proc. 24–28 June, 2004. Tomsk, Russia. V. 5743. P. 1–7.
- Halonen L., Carrington T. Fermi resonance and local modes in water, hydrogen sulphide, and hydrogen selenide // J. Chem. Phys. 1988. V. 88. P. 4171–4185.
- 11. Zheng Y., Ding S. Algebraic description of stretching and bending vibrational spectra of H_2O and H_2S // J. Mol. Spectrosc. 2000. V. 201. P. 109–115.
- Ulenikov O.N., Liu A.-W., Bekhtereva E.S., Grebneva S.V., Deng W.-P., Gromova O.V., Hu S.-M. High-Resolution Fourier Transform Spectrum of H₂S in the region of 8500–8900 cm⁻¹ // J. Mol. Spectrosc. 2004. In press.
- Tyuterev VI. G., Tashkun S.A., Schwenke D. An accurate isotopically invariant potential function of the hydrogen sulphide molecule // Chem. Phys. Lett. 2001. V. 348. P. 223-234.
- Ulenikov O.N., Malikova A.B., Koivussaari M., Alanko S., Anttila R. High Resolution Vibrational-Rotational Spectrum of H₂S in the Region of the v₂ Fundamental Band // J. Mol. Spectrosc. 1996. V. 176. P. 229–235.
- 15. Naumenko O., Campargue A. Local mode effects in the absorption spectrum of H_2S between 10780 and 11330 cm⁻¹ // J. Mol. Spectrosc. 2001. V. 209. P. 242–253.
- 16. Flaud J.-M., Groβkloβ R., Rai S.B., Stuber R., Demtroder W., Tate D.A., Wang L.-G., Gallagher Th.F. Diode laser spectroscopy of H₂S around 0.82 μm // J. Mol. Spectrosc. 1995. V. 172. P. 275–281.
- 17. Vaittinen O., Biennier L., Campargue A., Flaud J.-M., Halonen L. Local mode effects on the high-resolution overtone spectrum of H_2S around 12500 cm⁻¹ // J. Mol. Spectrosc. 1997. V. 184. P. 228–289.
- 18. Campargue A., Flaud J.-M. The overtone spectrum of H_2S near 13200 cm⁻¹// J. Mol. Spectrosc. 1999. V. 194. P. 43–51.
- 19. Flaud J.-M., Vaittinen O., Campargue A. The H_2S spectrum around 0.7 μ m // J. Mol. Spectrosc. 1998. V. 190. P. 262–268.

O.V. Naumenko, E.R. Polovtseva. Vibrational spectrum of the H₂S molecule.

Parameters of the effective vibrational Hamiltonian of the H_2S molecule are derived based on the extended experimental data set. The Darling–Dennison and weak Fermi-type resonance interactions were taken into account in the effective Hamiltonian. As a result of the fitting to 52 experimental band origins, 25 vibrational constants were derived, which reproduce the initial data within 0.03 cm⁻¹.