А.Ф. Жуков, Н.А. Вострецов

О флуктуациях излучения лазерного пучка в приземной атмосфере при снегопадах

Институт оптики атмосферы СО РАН, г. Томск

Поступила в редакцию 2.10.2003 г.

По турбулентной составляющей индекса мерцания β_r^2 излучения коллимированных лазерных пучков проведена оценка значения структурной характеристики флуктуаций показателя преломления воздуха (C_n^2) в снегопадах. Составляющая β_r^2 определена в мелкодисперсных снегопадах из одновременных измерений частотного спектра и индекса мерцания β^2 . Для оценки C_n^2 взяты только те спектры, в которых имелись турбулентный и гидрометеорный максимумы с глубоким минимумом между ними. Структурная характеристика C_n^2 в снегопадах уменьшается и не превышает $4 \cdot 10^{-15}$ см^{-2/3}. Не установлено регулярной зависимости между C_n^2 и объемным коэффициентом рассеяния. Индекс мерцания β^2 увеличивается с ростом расходимости узкого расходящегося пучка. Он не больше максимально возможного в турбулентной атмосфере без осадков. Распределение вероятностей флуктуаций лазерного излучения в узком расходящемся пучке не описывается логарифмически нормальным распределением и в большинстве случаев лучше описывается гамма-распределением. При малых замутнениях атмосферы по спектру рассеянного излучения в фокуспрованном пучке на расстоянии 10 мм от оси пучка в плоскости фокуса и скорости ветра можно уверенно различать между собой дымку и осадки (дождь). Обсуждаются погрешность оценки C_n^2 , выполнимость сделанных предположений и физические причины установленных особенностей.

Введение

Публикаций по теме данной статьи значительно меньше, чем по проблеме распространения излучения лазерного пучка в турбулентной атмосфере без осадков, хотя измерения при снегопадах и без осадков имеют одинаковую конечную цель. Она состоит в определении влияния атмосферы на характеристики лазерного пучка. Ранее проведенные исследования временных спектров флуктуаций в снегопадах показывают, что турбулентность вносит заметный вклад во флуктуации принимаемого лазерного излучения. Из сказанного следует, что логично сравнивать измеренные флуктуации в снегопадах и без осадков. Специфика исследований состоит в том, что турбулентность и частицы снегопада совместно вызывают флуктуации принимаемого излучения лазерного пучка. Именно это мало изученное обстоятельство существенно усложняет природу флуктуаций и порождает неопределенность в анализе результатов измерений флуктуаций излучения в снегопадах, в связи с полным отсутствием объективных данных о характеристиках турбулентности и частиц осадков. В статье приведена приближенная оценка C_n^2 . Еще раз, но с другой позиции, показана важность для индекса мерцания пространственных характеристик лазерного пучка.

Приведены предварительные экспериментальные данные о зависимости индекса мерцания в снегопаде от угла поля зрения приемника и о временном частотном спектре флуктуаций рассеянного излучения при малых замутнениях атмосферы. Анализируются экспериментальные распределения вероятностей флуктуаций лазерного излучения, измеренные в узком расходящемся пучке. На основе сравнения опубликованных экспериментальных данных о флуктуациях без осадков и наших данных в снегопадах показано, что наихудшее влияние атмосферы для узкого расходящегося пучка (УРП) возможно в турбулентной атмосфере без осадков.

Методики проведения и обработки измерений читатель может найти в других работах авторов, например [1].

1. Предварительные замечания

Введем три категории характеристик. Одна из них описывает детали экспериментов, обсуждаемых в этой статье, и включает в себя: длину волны излучения λ , расстояние между источником и приемником L (длина трассы), эффективный размер гауссова пучка α'_0 по уровню 1/е, полный угол расходимости θ для УРП, R_0 — радиус кривизны волнового фронта в центре пучка на передатчике, диаметр приемника $D_{\rm пp}$, полный угол поля зрения приемника γ .

Другая категория характеристик описывает среду при снегопадах. В нее входят объемный коэффициент рассеяния α , км⁻¹, максимальный размер частиц снегопада D_m , мм, структурная характеристика флуктуаций показателя преломления воздуха C_n^2 , см^{-2/3}, внутренний масштаб турбулентности l_0 , мм,

скорость ветра V, м/с и ее перпендикулярная к трассе составляющая V_{\perp} , м/с. К третьей категории характеристик отнесем оптическую толщу τ на измерительной трассе ($\tau = L\alpha$). В наших исследованиях коэффициент ослабления равен коэффициенту рассеяния. Подчеркнем, что одинаковые значения τ могут быть получены как при вариациях α (L = const), так и при изменениях L ($\alpha = \text{const}$), а также при бесконечном наборе различных сочетаний а и L. Более того, одинаковое а можно получить при разных концентрациях частиц, изменяя структуру частиц, например D_m . Таким образом, τ не однозначно характеризует среду и фактически сравнение характеристик флуктуаций при одинаковых значениях т, но разных L не логично, так как сопоставляются факты, полученные в различных средах.

Это обстоятельство побуждает нас провести иную систематизацию результатов измерений, например по α и D_m . Из λ , α'_0 и L составим дифракционный параметр пучка $\Omega = k {\alpha'_0}^2 / L$ ($k = 2\pi/\lambda$), а из L и R_0 — параметр фокусировки $X = L/R_0$. Ясно, что при исследовании зависимости индекса мерцания флуктуации от Ω предпочтительно сравнить факты, полученные в одновременных измерениях на одной и той же трассе, но при разных Ω .

В измерениях $\lambda = 0,63$ мкм, $D_{\rm np} - 0,3$ или 0,1 мм. По *L* и θ рассчитывался размер пучка в плоскости приема $D_{\rm n}$. Он совпадал с измеренным в эксперименте. УРП — пучок из выхода лазера ЛГ-38, ЛГ-38А или ЛГН-215 — имел начальный диаметр около 4 мм, полный угол расходимости $\theta = 10^{-3}$ рад. Во всех измерениях (кроме разд. 4) угол поля зрения приемника равнялся 3,7 · 10⁻² рад (около 2°). В данных, приведенных в разд. 4, он изменялся и составлял примерно 10⁻³; 5 · 10⁻³ и 2,7 · 10⁻² рад.

Флуктуации лазерного излучения в этой статье характеризуются индексом мерцания β^2 , спектральной функцией U(f) и плотностью вероятностей $\rho(V')$:

$$\beta^{2} \equiv \sigma_{I}^{2} = \langle V' - \langle V' \rangle^{2} \rangle / \langle V' \rangle^{2}$$
$$U(f) = fW(f) / \int W(f) df,$$

где σ_I^2 — дисперсия флуктуаций интенсивности излучения; W(f) — спектральная плотность мощности на частоте f; V' — сигнал на выходе линейного усилителя, на вход которого подается сигнал с выхода фотоприемника. Символ <> означает среднее во времени. Мы осредняли β^2 по интервалу времени ≈ 20 с, а U(f) — по 100 с в каждом фильтре. Всего их было 38. Была проведена оценка погрешности в измерениях β^2 и U(f). В диапазоне изменения β^2 от 0,01 до 1 она не превышала 15%. Для U(f) амплитудная погрешность не превышала 10%, а частотное разрешение уменьшалось с ростом частоты и составляло не менее половины расстояния между центральными частотами трехоктавных фильтров, используемых в анализаторе спектра FSP-38.

Измерения флуктуаций на оси пучка были проведены в 150 снегопадах. Однако мы не встре-

тили в измерениях предельно худших условий по α , D_m и V, которые могут наблюдаться в природе. Снегопады имеют свои особенности. Их желательно учитывать в измерениях. Каждый снегопад индивидуален по значению физических характеристик и изменению их во времени. Более того, почти всегда в снегопадах не удается получить ансамбль реализаций в одинаковых условиях и реально приходится ориентироваться на характеристики одной реализации в конкретных условиях, которые нами были только частично определены.

Для улучшения качества измерений одновременно с основными проводились непрерывные измерения прозрачности атмосферы на трассе 2×100 м на длине волны 0,55 мкм прибором РДВ-3. По его показаниям рассчитывалось α , а затем τ на измерительной трассе. Также непрерывно измерялись вблизи приемника скорость ветра и его направление. По ним рассчитывалась перпендикулярная к трассе составляющая скорости ветра. После улавливания частиц на меховую подложку измерялся максимальный размер частиц снегопада D_m с помощью масштабной линейки. Случаи быстрого изменения τ , D_m , V_{\perp} исключались из обработки. Критерий быстрого изменения параметров описан в [5].

В результате этих измерений были получены данные об основных характеристиках флуктуаций излучения. Особенности, выявленные в них, уже приведены в наших прежних публикациях. Предположим, что все флуктуационные характеристики излучения лазерного пучка имеют турбулентную и снеговую составляющие. Обозначим их индексами «т» и «с». Например, β_r^2 и β_c^2 для индекса мерцания β^2 , а для спектра $U(f) - U_r(f)$ и $U_c(f)$.

Далее будем считать турбулентную $\beta_{\rm r}^2$ и снеговую $\beta_{\rm c}^2$ составляющие флуктуаций независимыми в связи с малой концентрацией снежинок в воздухе [6], т.е. $\beta^2 = \beta_{\rm r}^2 + \beta_{\rm c}^2$, $U(f) = U_{\rm r}(f) + U_{\rm c}(f)$.

2. Оценка C_n^2 в снегопадах

Фактически без знания величины C_n^2 невозможно рассчитать $\beta_{\rm T}^2$ и другие турбулентные флуктуационные характеристики пучка в атмосфере без осадков [3, 4, 7-10] и в осадках [2, 6, 10]. В снегопадах величина C_n^2 не определена. Для ее определения будем использовать измерения в коллимированных пучках при малых значениях оптической толщи τ (режим роста флуктуаций [11, 12]). В таких измерениях влияние турбулентности воздуха вполне ощутимо. Подходящими для избранной цели будут одновременные измерения β^2 и U(f) и методика, впервые описанная в [13], которую мы здесь несколько скорректируем. Используемая нами методика, как и в [13], основана на определении площади (S) под кривой U(f) в координатах U(f) и lg f, которой соответствует β^2 , а также площадей $S_{\rm T}$ и $S_{\rm c}$ под турбулентной и снеговой частью U(f) ($S = S_{\rm T} + S_{\rm c}$), которым соответствуют $\beta_{\rm T}^2$ и $\beta_{\rm c}^2$. Раздел между $S_{\rm T}$ и $S_{\rm c}$ мы так же, как и в [13], провели на частоте $f_{\rm M}$ (рис. 1).

Рис. 1. Зависимость спектра U(f) от lg f при $D_m < 5$ мм: кривая 1 - L = 130 м, $\beta^2 = 0.14$, $\beta_{t}^2 = 0.07$, $\alpha = 0.9$ км⁻¹, Ω = 54; 2 - L = 390 m, $β^2 = 0,13$, $β_r^2 = 0,05$, α = 2,1 km⁻¹, $\Omega = 4,5$

На рис. 1 приведены кривые 1, 2 для лучшего и худшего случая по погрешности в оценке β_{T}^{2} соответственно. Для разделения составляющих в β² были взяты не все спектры, а только те, которые удовлетворяли двум условиям:

1) Нормированная на $U(f_{\rm M})$ разность между минимальным значением среди двух величин $U(f_{\rm T})$ и $U(f_c)$ и значением $U(f_{\rm m})$ была больше 0,5, т.е.

$$[U(f_{\rm T}); U(f_{\rm c})] \min / U(f_{\rm M}) > 1.5,$$
(1)

где $f_{\rm T}$ и $f_{\rm c}$ – частоты турбулентного и снегового максимумов в спектре; $f_{\rm M}$ – частота с минимальным значением U(f) между $f_{\rm T}$ и $f_{\rm c}$. Условие (1) означает, что функция U(f) между $U(f_r)$ и $U(f_c)$ должна иметь явно выраженный минимум. Условие (1) определяет принятую количественную меру такого минимума.

2) Брались только те спектральные кривые U(f), которые имели турбулентный максимум, т.е. значения $U(f) < U(f_{T})$. Используемая здесь методика отличается не только более жестким выбором частотного спектра U(f), но и другими приемами, а именно:

а) достраивался спектр $U_{r}(f)$ до пересечения с осью lg f путем продолжения измеренной части $U_{\rm T}(f)$ (крестики при $f > f_{\rm T}$ на рис. 1);

б) далее достраивался слева спектр $U_{\rm T}(f)$ до пересечения с осью $\lg f$ (крестики при $f < f_{\rm T}$, рис. 1). Мы вынуждены так поступить. Дело в том, что частотный спектр измеряется в области частот от 2 Гц до 20 кГц, а индекс мерцания от 0,05 Гц (1/20 с) до 20 кГц. Такое различие приводит к тому, что мы не учитываем часть площади в S_т, которую обозначим S_+ . Спектр $U_r(f)$ достраивался (при $f < f_{\rm T}$) в предположении симметричности $U_{\rm T}(f)$ относительно f_{т.} Спектр, близкий к симметричному, получен для слабых флуктуаций в [14]. Он же приведен в монографии [8, рис. 6.37]. Подробности об этом аспекте даны ниже в разд. 8. Светлыми кружками на рис. 1 обозначены расчетные значения снеговой части $U_{\rm c}(f)$, полученные из соотношения $U_c(f) = U(f) - U_r(f)$ в области перекрытия спектров $U_{r}(f)$ и $U_{c}(f)$ от f_{1} до f_{2} (см. рис. 1).

На рис. 1 сплошными кружками и треугольниками обозначены измеренные значения U(f). В наших данных спектров с двумя максимумами и явным минимумом между ними оказалось 40. Для трасс длиной 130, 390, 650 м это составляет 7% из обработанных спектров в снегопадах. В подавляющем же большинстве в спектрах нет турбулентного максимума в области частот больше 2 Гц, хотя турбулентная составляющая в форме спектров явно заметна в области низких частот ($f < f_{c}$). Особенно это характерно для коллимированных пучков. Однако по используемой здесь методике такой вклад не удается оценить. Добавка площади S₊ в S_т улучшает ее оценку. Подчеркнем, что величина S₊ в используемых спектрах составляет не более 36% от S_т.

Максимальная погрешность оценки S_т, по нашей методике, состоит из суммы двух частей. Первая часть определяется отношением площади под измеренной кривой U(f) в области частот от f_1 до f_2 ко всей площади $S_{\rm r}$. Она заштрихована на рис. 1 для кривой 2. В используемых для оценки C_n^2 спектрах эта часть погрешности не превышала 58%.

Вторая часть погрешности связана с предположением о симметричности турбулентного спектра. Она оценивалась отношением площади под симметричной кривой S_{сим} [8, рис. 4.37] к площади под всей несимметричной кривой S_{нес}, т.е. $(S_{\text{сим}}/S_{\text{нес}}) \cdot 100\%$. Эта часть погрешности равна примерно 9%. Тогда суммарная погрешность в оценке S_т не превышала 82%. Здесь добавлена погрешность в измерениях β² ≤ 15%. Оценка погрешности для S_c определялась аналогично оценке первой части погрешности для S_т. В используемых спектрах она не превышает 75%.

Оценка C_n^2 в снегопадах проводилась по следующей схеме:

1) По U(f), выбранных с соблюдением двух β^2 вышеописанных условий, И находилась турбулентная составляющая β_{T}^{2}

2) По рис. 6.1 из [8, с. 147] с учетом Ω и L для коллимированного пучка находили $P_0 = \sigma_{\chi}^2 / \sigma_{\chi p}^2$. Здесь $\sigma_{\chi p}^2$ – дисперсия логарифма амплитуды плоской волны, рассчитанная методом плавных воз-мущений; σ_{χ}^2 – то же для пучка. 3) Из [4, с. 538] $\sigma_{\chi p}^2 = 0,308 C_n^2 k^{7/6} L^{11/6}$. Тогда $\sigma_{\chi}^2 = P_0 \sigma_{\chi p}^2 = 0,308 P_0 C_n^2 k^{7/6} L^{11/6}$.

4) При условии выполнимости логарифмическинормального закона для турбулентных флуктуаций интенсивности в лазерном пучке в области слабых флуктуациях [8] и соотношения из [4, с. 396] имеем $\sigma_{\chi}^2 = 0,25 \ln (\beta_{\rm T}^2 + 1).$

5) Тогда с учетом, что λ = 0,63 мкм, получаем C_n^2 (cm^{-2/3}):

$$C_n^2 = 0.53 P_0^{-1} L^{-1.83} \ln(\beta_{\rm T}^2 + 1) k^{-7/6}.$$
 (2)

В таблице приведены β^2 , $\beta_{\rm T}^2$, α , V, V_{\perp} и $C_n^2 =$ = $P \cdot 10^{-N}$ для $\Omega = 54$, L = 130 м, $D_m \le 2$ мм, полученные в ночное время в продолжительном снегопаде. В этих измерениях имеется глубокий минимум в U(f) между $f_{\rm T}$ и $f_{\rm c}$. Иными словами, составляющие

спектра $U_{\rm r}(f)$ и $U_{\rm c}(f)$ фактически разделяются между собой по частоте. По таким спектрам наиболее точно можно оценить C_n^2 .

№ из- мере- ний	β^2	$\beta_{\scriptscriptstyle T}^2$	α, км ⁻¹	<i>V</i> , м∕с	<i>V</i> ⊥, м∕с	$C_n^2 = P \cdot 10^{-N},$ $CM^{-2/3},$	
						P	N
1	0,25	0,06	1,9	6,4	5,5	2,2	15
2	0,22	0,03	1,5	4,6	4,1	1,2	15
3	0,22	0,06	1,3	4,9	4,2	1,9	15
4	0,21	0,05	1,3	5,6	4,8	1,7	15
5	0,21	0,05	1,3	4,6	3,9	1,6	15
6	0,25	0,03	1,3			1,1	15
7	0,31	0,06	1,3	4,2	3,8	1,9	15
8	0,20	0,04	1,2	4,7	4,0	1,5	15
9	0,25	0,04	1,2	5,2	4,5	1,2	15
10	0,13	0,05	1,1	7,4	6,3	1,6	15
11	0,14	0,07	0,9	5,1	4,5	2,4	15
12	0,12	0,06	0,7	3,0	2,7	2,1	15
13	0,14	0,06	0,5	4,6	4,1	2,1	15
14	0,13	0,07	0,5	4,1	3,7	2,4	15
15	0,12	0,08	0,4	3,5	3,1	2,7	15

На рис. 2 показаны спектры для измерений № 10 и 14 (таблица) при одинаковых значениях $\beta^2 \approx 0,13$. На рис. 1 (кривая 1) приведен спектр для измерения № 11. Из рис. 1 и 2 следует, что близкие значения β² можно получить при существенно разных по форме спектрах U(f). В изменениях формы спектров мы выделяем два характерных вида изменений. Первый из них определяется величиной отношения β_c^2 к β_T^2 (или наоборот), а второй зависит от структурных характеристик частиц снегопада D_m и величины скорости ветра. По оценке β_{T}^{2} в снегопадах, выпадающих в разные числа, были рассчитаны значения C_n^2 для пучков с $\Omega = 18; 4,5;$ 2,5 и 0,1 на трассе 390 м, а также с $\Omega = 54$ на трассе 130 м. Оценки C_n^2 сделаны в восьми снегопадах. В каждом снегопаде проявляется рост β^2 и $\delta = \beta_c^2 / \beta_T^2$ с увеличением α, но по всем снегопадам не установлено регулярности в их абсолютных величинах.

Рис. 2. Зависимость спектра U(f) от lg f при $D_m < 5$ мм: кривая 1 - L = 130 м, $\beta^2 = 0,13$, $\beta^2_r = 0,05$, $\alpha = 1,1$ км⁻¹, $\Omega = 54$; 2 - L = 130 м, $\beta^2 = 0,13$, $\beta^2_r = 0,07$, $\alpha = 0,5$ км⁻¹, $\Omega = 54$

Мы полагаем, что сказывается различный начальный уровень турбулентности (C_n^2). В отсутствие хлопьев в снегопадах C_n^2 уменьшается и изменяется, по нашим оценкам, от $1,1 \cdot 10^{-15}$ до $4 \cdot 10^{-15}$ см^{-2/3}. В хлопьях растет β^2 и, естественно, увеличивается β_{τ}^2 . Об этом подробнее изложено в разд. 8.

Зависимость среднего индекса мерцания β² от диаметра пучка в плоскости приема D_п

На рис. З показана зависимость $\beta^2 = \beta^2 (D_n)$ в УРП. Диаметр пучка в плоскости приема в этих измерениях менялся дискретно путем изменений в передатчике, в котором на одинаковом расстоянии от лазера устанавливались объективы с разной длиной фокуса (от 25 до 75 см). Это приводило к существенному изменению расходимости лазерного пучка и, естественно, D_n .

Рис. 3. Зависимость среднего индекса мерцания $\tilde{\beta}^2$ от логарифма диаметра пучка $D_{\rm u}$ в плоскости приема для УРП: кривая $t - D_m = 1-3\,$ мм; $2 - D_m = 5\div10\,$ мм при $\alpha = 1-1,7\,$ км⁻¹. Вертикальные линии – разброс значений β^2

На рис. З показана зависимость $\beta^2 = \beta^2(D_n)$, а не $\beta_c^2 = \beta_c^2(D_n)$. Разделение β^2 на β_r^2 и β_c^2 невозможно, поскольку в U(f) нет выраженного минимума между f_r и f_c . Поэтому мы полагаем $\beta^2 \approx \beta_c^2$, хотя вклад турбулентности по спектрам очевиден. Из рис. З следует увеличение $\bar{\beta}^2$ с ростом D_n , что качественно согласуется с результатами теоретических работ [2, 6, 15, 16] и ранее проведенными экспериментами [17, 18]. Более того, из рис. З следует увеличение $\bar{\beta}^2$ с ростом максимальных размеров частиц D_m . Оно предсказано в [11] и установлено в снегопадах в [1, 12].

Зависимость среднего индекса мерцания β² от угла поля зрения приемника γ

Мы исследовали зависимость среднего индекса мерцания β^2 от угла поля зрения приемника γ . Измерения проведены в УРП при $\alpha = 0.5 \div 0.7$ км⁻¹, $D_m = 1 \div 3$ мм на трассе длиной 130 м, диаметр приемника 0,1 мм. Значения γ изменялись путем установления диафрагм с различными диаметрами перед блендой длиной 1 м, размещенной перед фотоприемником. Среднее значение β^2 мало растет при увеличении γ от $0,5 \cdot 10^{-2}$ до $2,7 \cdot 10^{-2}$ рад и несколько падает при уменьшении γ ($\gamma = 10^{-3}$ рад). Наша версия такого изменения зависимости $\beta^2 = \beta^2(\gamma)$ приведена в разд. 8.

5. Распределение вероятностей флуктуации лазерного излучения в узком расходящемся пучке

Форма эмпирических распределений вероятностей (ЭРВ) существенно видоизменяется. Детали изменений ЭРВ приведены в [22]. Мы продолжили анализ ЭРВ. В этом разделе приведены результаты исследований пригодности для описания ЭРВ следующих распределений: гамма-распределения, обобщенного и урезанного гамма-распределения, бетараспределения, нормального, логарифмически нормального и экспоненциального распределений.

В анализе ЭРВ с правой асимметрией использовались различные методы: выпрямленных диаграмм, наименьших квадратов, высших моментов и максимального правдоподобия, а также критерии χ^2 и Колмогорова-Смирнова. Редкие ЭРВ с левой асимметрией не исследовались (40 из 460 ЭРВ). Они получены при одновременном выпадении отдельных крупных хлопьев совместно с малыми частицами снегопадов. У нас есть все основания считать, что при интегральных вероятностях от 0,05 до 0,95 гамма-распределение более пригодно для описания ЭРВ, чем все исследуемые распределения. Указанный интервал для вероятностей обычно используется в математической статистике. Отдельно уточним, что и в этом диапазоне гамма-распределение по критерию χ^2 и Колмогорова-Смирнова не пригодно для описания ЭРВ.

Особо важно и то, что ЭРВ не описывается логнормальным распределением, которое хорошо выполняется в турбулентной атмосфере без осадков [8–10] в области слабых флуктуаций.

Несколько слов о гамма-распределении, аналитическая запись для которого общеизвестна [23, с. 192]. Для V' плотность вероятности

$$\rho_{\alpha_0, \beta_0}(K_i) = \{K_i \, \alpha_0 / [\Gamma(\alpha_0 + 1) \, \beta_0^{\alpha_0 + 1}]\} \exp(-K_i / \beta_0), \quad (3)$$

где $\alpha_0 > -1$ — параметр формы; $\beta_0 > 0$ — параметр масштаба; $\Gamma(\alpha_0 + 1)$ — гамма-функция (равная α_0 !) при целом α_0 ; $V' \equiv K_i \equiv N_0$ (N_0 — число анализируемых уровней в анализаторе импульсов).

Параметр β_0 зависит от коэффициента усиления регистрирующей аппаратуры. С увеличением α_0 гамма-распределение приближается к нормальному [24, с. 107]. Когда $\alpha_0 = 0$, то гамма-распределение переходит в отрицательное экспоненциональное распределение [24, с. 111]. Нормальное распределение мы получили при малых τ и D_m , а отрицательное экспоненциальное распределение при больших τ и D_m [22]. На рис. 4 показано изменение параметра формы гамма-распределения α_0 от оптической толщи на трассах длиной 260, 520, 780 и 964 м. Значения α_0 получены методом выпрямленных диаграмм по методике, описанной в [23, 25].

Рис. 4. Изменение параметра формы гамма-распределения α_0 от оптической толщи τ и максимального размера частиц снегопада D_m . н — нормальное распределение, числа в квадратах — $D_m = 1$ мм, числа в кружках — $1 < D_m < 5$ мм, просто числа вне значков — $D_m \ge 5$ мм, все числа — значения α_0

На рис. 5 уточняется изменение α_0 и β^2 для двух трасс от α и D_m и хорошо видна тенденция уменьшения α_0 с ростом α .

Рис. 5. Изменение параметра формы гамма-распределения α_0 от коэффициента рассеяния α и максимального размера частиц снегопада D_m . н – нормальное распределение, числа в квадратах – $D_m = 1$ мм, числа в кружках – $1 < D_m < 5$ мм, числа вне значков – $D_m \ge 5$ мм, все числа – значения α_0 . L = 260 м (*a*), 964 м (*b*)

Имеется существенный разброс в α_0 при близких значениях α . Он, скорее всего, вызван вариациями C_n^2 в разные дни измерений и плохой оценкой распределения частиц по размерам, которая грубо определялась одним только D_m . Из рис. 5 видно, что на трассе 964 м при малых α отсутствует нормальное распределение, а на трассе 260 м оно видно. По-видимому, ЭРВ зависит не только от α , но и от L ($\tau = \alpha L$).

6. Определение типа погоды при малых замутнениях приземного слоя атмосферы

До сих пор остается не решенной задача объективного измерения реально существующего типа погоды в приземной атмосфере при малых замутнениях. Обычно для этой цели используют данные о метеорологической дальности видимости S_м. Их получают из визуальных наблюдений или с помощью специальных приборов. Однако вполне ясно, что близкие и даже одинаковые значения S_м могут иметь место при существенно разных типах погоды, например при сильной дымке (смоге) и слабых осадках, когда выпадают редкие частицы (следы осадков), возможны и другие случаи. Важно то, что следы осадков не регистрируются стандартными измерителями интенсивности осадков, а оптические измерители в таких случаях измеряют S_м с большой погрешностью и вовсе не обладают способностью различать тип погоды.

Неопределенность в решении задачи о типе погоды уменьшается, если измерять флуктуации рассеянного оптического (лазерного) излучения. Это лучше делать вне пучка. Дело в том, что в пучке при малых замутнениях трассы дымкой или осадками турбулентность оказывает определяющее влияние на флуктуации принимаемого излучения, поэтому, чтобы избавиться от ее влияния, лучше вынести фотоприемник из пучка. Его можно разместить под любым углом к пучку, но при этом желательно объем пучка, из которого принимают рассеянное излучение, взять достаточно большим, чтобы уменьшить влияние флуктуаций концентрации рассеивающих частиц, а приемник не должен сильно ослаблять флуктуации. Причем длину волны излучения лучше всего взять меньше размеров рассеивающих частиц.

По известным из атмосферной оптики соображениям следует отдать предпочтение самым малым углам рассеяния (вне пучка). При фокусировке оптического пучка от He—Ne-лазера достигаются почти все требования к измерителю. Пучок при этом имеет минимальный размер возле фотоприемника, что позволяет проводить измерения только рассеянного излучения в предельно малых углах рассеянного излучения в предельно малых углах рассеяния (вблизи пучка), где величина рассеянного излучения наибольшая, и использовать приемник малого размера, работающий в токовом режиме даже при мощности лазера в несколько десятков милливатт. Возможность измерения в предельно малых углах рассеяния достигается тем, что в отличие от известных нам методик, где измерялись средние значения сигнала, в предлагаемой методике измеряются флуктуации сигнала, нормированные на среднее значение измеряемого сигнала. Это значительно уменьшает погрешности измерений, связанные с несовершенством оптических деталей, формирующих лазерный пучок.

Итак, мы измерили основные характеристики флуктуаций принимаемого рассеянного излучения фокусированного лазерного пучка на трассе 130 м в дымке, мороси, дожде и снегопаде при весьма слабых замутнениях (при S_м > 5 км) на расстоянии от оси пучка $\Delta l = 1$ см. (Подобные эксперименты в атмосфере нам не известны.) Диаметр пучка в плоскости приема равнялся примерно 0,4 см, Ω ≈ 54. Диаметр приемной диафрагмы, установленной перед фотоэлектронным умножителем, был равен 0,1 мм, а полный угол поля зрения приемника $\gamma = 3.7 \cdot 10^{-2}$ рад. Вначале фотоприемный узел совместно с блендой устанавливался на оптическую ось фокусированного пучка. Затем приемный узел и бленда микровинтами смещались параллельно на 1 см в сторону от оптической оси сфокусированного пучка. Другие детали измерений описаны в [26–28], где проведен анализ β^2 , U(f) и $\rho(V')$ от τ и V_{\perp} .

Мы исследовали зависимость б' от V и V_{\perp} : $\delta' = f_m/V$ или f_m/V_{\perp} , f_m — частота максимума в дымке или $f_m \equiv f_c$ в осадках. Оказалось, что отношение f_m/V_{\perp} малоинформативно, а $\delta' = f_m/V$ для дождя и дымки различно и по б' можно уверенно различить дымку и дождь. Морось и снег от дымки, морось от дождя и дождь от снега не удалось отличить, потому что гравитационные скорости падения частиц дымки, мороси, снега не достаточно различаются. В дожде и дымке гравитационные скорости падения частиц сильно отличаются друг от друга, что и позволило идентифицировать дождь и дымку. Поэтому при больших ветрах необходимо измерять не только максимум спектра, скорость ветра, но и гравитационную скорость падения частиц.

Предлагаемый метод не идеален, ибо возможны промахи в подборе аппаратуры. Для измерения V можно воспользоваться стандартной метеоаппаратурой. Наша задача сводится к измерению частотного положения максимума спектра. Увеличение рассеянного излучения в предлагаемом способе улучшает возможности измерителя, что выгодно отличает его от других. Более того, динамические свойства рассеянного излучения в атмосфере меняются в широком частотном диапазоне и при определенной организации измерений они содержат информацию о типе погоды.

7. Сравнение индекса мерцания и частотного спектра в снегопадах и без них

Начнем с нормированного индекса флуктуаций. Для сравнения возьмем данные из [19, рис. 4] $(\lambda = 0,43$ мкм, гауссовский лазерный пучок, L = 1200 м, диаметр пучка на входе в атмосферу около 20 мм (по уровню e^{-2}), полная расходимость $3,9 \cdot 10^{-3}$ рад, высота трассы 1,2 м, диаметр приемной диафрагмы 0,25 мм). Условия распространения на трассе в [19] описывались с помощью C_n^2 , l_0 и V_{\perp} . Эти три величины одновременно измерялись оптическими приборами на трассах вблизи основной трассы. Такие измерения проводились, повидимому, впервые. Они значительно улучшают качество эксперимента. В [19] получены максимальные значения β^2 в так называемом режиме фокусировки. Разброс β^2 в [19] прежде всего определяется разной величиной l_0 в измерениях.

На рис. 6 показаны зависимость β^2 (шкала AD) от β_0^2 (шкала DC) в турбулентной атмосфере без осадков из [19, рис. 4] и зависимость β^2 (шкала BC) от τ (шкала AB) при $L = 37 \div 1928$ м, $D_m \le 5$ мм, $D_{\rm пp} = 0,1$ мм в снегопадах в УРП с расходимостью 10^{-3} рад. Подчеркнем, что масштаб шкалы AD в десять раз больше шкалы ВС. Область изменения β^2 от τ находится между сплошными кривыми. Область изменения β^2 от β_0 показана штриховыми линиями. Из рис. 6 следует, что максимальные флуктуации в снегопаде в УРП ($D_m \le 5$ мм) примерно в 8 раз меньше, чем максимальные флуктуации в квазисферической волне [19] без осадков. Разброс значений β^2 в снегопадах вызван вариациями D_m и, возможно, l_0 . Отдельно отметим, что в коллимированных пучках максимальное значение β^2 измерено нами на трассе 1310 м ($\Omega = 8,5$). Оно равно β² ≈ 1,1, что примерно в 6 раз меньше, чем в турбулентной атмосфере без осадков. На трассе 390 м ($\Omega = 4,5$) в слабом снегопаде β^2 был немного больше единицы (крупа *D_m* ≤ 3 мм). Во всех иных случаях коллимированного пучка $\beta^2 < 1$. Однако в УРП на трассе 650 м в сплошных хлопьях $(D_m \approx 7 \text{ мм})$ измеренные β^2 достигали 1,7 [1], что все-таки примерно в 4 раза меньше возможных турбулентных флуктуаций без осадков.

Рис. 6. Зависимость β^2 (шкала AD) от $\beta_0^2 = 0,496 C_n^2 k^{7/6} L^{11/6}$ (шкала DC) без снегопада и зависимость β^2 (шкала BC) от оптической толщи τ (шкала AB) в снегопаде в УРП. $L = (37 \pm 1928)$ м, $D_m \le 5$ мм, $D_{np} = 0,1$ мм

Далее сравним частотные спектры, измеренные в снегопаде и без осадков. На рис. 7 (кривая 1) приведен самый высокочастотный спектр из [20] без осадков. Он измерен на трассе L = 1750 м ($\lambda = 0,63$ мкм, коллимированный пучок с выходным диаметром 50 см). Скорость ветра (V_{\perp}) в [20] не приведена, но, по-видимому, она больше 6,5 м/с.

Рис. 7. Зависимость lg *U*(*f*) от lg *f*: кривая *1* – без осадков [20]; *2* – в снегопаде [21]

Кривой 2 показан самый высокочастотный спектр в снегопаде [21]. Он измерен в УРП на трассе 130 м, когда $\alpha = 5,6 \text{ кm}^{-1}$ и скорость ветра 12 м/с ($V_{\perp} = 6 \div 7 \text{ м/c}$), $D_m \le 5 \text{ мм}$. Частотный спектр в снегопаде может быть сравним или немного превышать по частоте спектр сильных турбулентных флуктуаций. Однако, по нашим данным, он обычно в снегопаде менее высокочастотный по сравнению с самым высокочастотным спектром в области сильных флуктуаций [20].

Отсюда ясно, что максимальные временные искажения лазерного сигнала возможны в турбулентной атмосфере без осадков. Это один из главных итогов всего исследования.

8. Обсуждение результатов

Большинство результатов, изложенных в данной статье, можно объяснить на основе концепций, известных в физике атмосферы и оптике, но все особенности флуктуаций не удается свести воедино. Мы, например, логически не смогли объяснить не всегда выполняющуюся зависимость $\beta_{\rm c}^2$ от D_m в коллимированном пучке. Результаты исследования зависимости $\beta_{\rm c}^2$ от D_m в коллимированном пучке пока не опубликованы. Странность этого усиливается тем, что в УРП такая зависимость регулярна и экспериментально установлена. По-видимому, усиление роли турбулентности во флуктуациях при неточном разделении β_r^2 и β_c^2 ослабляет ожидаемую зависимость в некоторых случаях. Так что в этой части задачи необходимы дальнейшие измерения с более тщательным разделением составляющих флуктуаций. Дальнейшие измерения флуктуаций также нужны для исследования зависимости $\beta_c^2 = \beta_c^2(\gamma)$ в более широком диапазоне изменения у.

Обычно измерения днем проводились при сплошной облачности. В таких условиях приток солнечной энергии к снежной поверхности мал, что уменьшает

О флуктуациях излучения лазерного пучка в приземной атмосфере при снегопадах

значения C_n^2 по сравнению с солнечной погодой без облачности. Ночью C_n^2 обычно меньше, чем днем, а влияние облачности на C_n^2 ослаблено. Мы также проводили измерения вертикального градиента температуры. Датчики температуры устанавливались на высоте 1 и 3 м (или 0,5 и 2 м). Они были надежно защищены от частиц снегопада. Градиент температуры постепенно уменьшался во времени до нуля (с учетом погрешности измерения). Первопричина такого изменения заключается, повидимому, в самих частицах снегопада. Среднее расстояние между частицами снегопада значительно больше толщины пограничного слоя на поверхности частицы. Более того, частицы двигаются к земле независимо друг от друга. Так что в снегопаде нет направленного потока тепла сверху вниз, хотя частицы оседают на землю. Частицы снегопада изменяют только температуру верхнего слоя снежной поверхности и вызывают постепенное изменение вертикального градиента температуры в воздухе. Сказывается различная тепловая инерция воздуха и снежной поверхности. В литературе мы не нашли

количественной оценки таких изменений. При проведении оценки C_n^2 мы вынуждены были сделать несколько допущений, выполнимость некоторых из них, мягко говоря, под вопросом. Перечислим их, сопровождая краткими комментариями.

1. Мы полагаем аддитивность турбулентной и снеговой составляющих флуктуаций. Экспериментально это еще никем не доказано. В теории по этому поводу нет единого мнения. Из спектров ясно, что в области частот от f_1 до f_2 (S_{II} – площадь перекрытия) происходит перекрытие спектров U_r(f) и $U_{\rm c}(f)$. Значимость $S_{\rm II}$ в $S_{\rm T}$ и $S_{\rm c}$ существенна. Она изменяется во времени и определяет величину максимальной погрешности оценки C_n². Особенно при малых значениях S_{T} . Более того, частоты f_1 и f_2 выбираются нами без строго физического обоснования. Выбор частот f_1 и f_2 сделан на основе характерного наклона измеренной части U(f), что вызывает неизбежный субъективизм в решении. Аддитивность составляющих флуктуаций упрощает задачу, но она не бесспорна и нуждается в строгом обосновании.

2. Измерения проводятся в области слабых турбулентных флуктуаций. Это предположение выполняется, так как обычно измеренное значение $\beta^2 < 1$.

3. Мы рассчитывали σ_{χ}^2 по β_r^2 в предположении, что турбулентная составляющая флуктуаций интенсивности в снегопадах распределена по логарифмически нормальному закону. Здесь $\chi = \ln A$, A – амплитуда электрического поля. Это не доказано экспериментально. Без осадков в области слабых флуктуаций приемлем логарифмически нормальный закон, в том числе и для лазерных пучков. В снегопадах флуктуации вовсе не распределены по этому закону. Однако это касается смеси из двух составляющих. По нашему мнению, ничто не препятствует выполнимости логарифмически нормального распределения для одной турбулентной составляющей флуктуаций в снегопадах.

4. Все турбулентные флуктуации нами приписаны C_n^2 , а это, как показывают данные работы [19], строго не верно. Часть из них обусловлена внутренним масштабом турбулентности (l_0). Значение l_0 в снегопадах не определено, и завышение C_n^2 количественно оценить не удается.

5. Предположение о симметричности турбулентной части спектра в снегопадах противоречит теоретическим расчетам [4, 8–10]. Однако экспериментальные спектры, измеренные [4, 8, 14] в широкой области частот, включая весьма низкие частоты (f < 2 Гц), в окрестности максимума близки к симметричным. Асимметрия увеличивается при U(f) < 0,2. Эта область значений U(f) существенна в наших спектрах. Из нашей оценки по спектру для слабых флуктуаций [14, рис. 4.37] и из предположения о симметричности спектра следует, что при оценке $S_{\rm T}$ мы не добираем ~9% площади. Тогда суммарная погрешность в оценке $S_{\rm T}$ составит не более 82% с учетом 15%-й погрешности измерения β^2 . Так что оценка C_n^2 сделана с большой погрешностью.

6. Возможности методики оценки C_n^2 в снегопадах, используемой в данной статье, ограничены еще и тем, что индекс мерцания β_c^2 увеличивается с ростом размеров частиц (D_m). Это характерно для УРП [1, 12] и пока экспериментально не доказано по всем нашим данным для коллимированных пучков. Мешает турбулентность. Влияние D_m ослаблено, так как взяты для оценки C_n^2 измерения при *D_m* ≤ 1 ÷ 5 мм, т.е. отсутствуют хлопья. Зависимость $\beta^2 = \beta^2(D_{\rm II})$ следует из теоретических расчетов [2] и других работ. Увеличение β^2 с ростом D_{π} при точечном приемнике с конечным углом приема, повидимому, обусловлено увеличением во флуктуациях сигнала роли частиц, находящихся вне оси лазерного луча, вблизи которой установлен приемник. Этим же мы объясняем изменение $\beta^2 = \beta^2(\gamma)$. Здесь особо важно соотношение между γ и $\lambda/D_{\rm r}$. где $D_{\rm r}$ – средний диаметр частицы. Зависимость $\bar{\beta}^2 = \bar{\beta}^2(\gamma)$ явно должна обнаружиться, когда $\gamma < \lambda / D_r$ [29].

7. Неизбежно возникает вопрос, что же влияет на β^2 : $X = L/R_0$ или D_{π} , а может X и D_{π} одновременно? Влияние Х установлено экспериментально в [18], а роль D_п в разд. З данной статьи. Формально X и $D_{\rm II}$ связаны между собой. Эта связь неоднозначна. Ответ на поставленный вопрос во многом зависит от ответа, зависит ли объемный коэффициент рассеяния от Х и Дл? Особо важно это для лазерного пучка в снегопадах, когда поперечный размер пучка сравним или меньше размеров частицы. Такой случай возможен в снегопадах с хлопьями в УРП у передатчика и в фокусированном пучке вблизи фокуса пучка. Оптимальный способ определиться по первому вопросу состоит в одновременных измерениях характеристик флуктуаций при равных D_{II} , но существенно разных X.

Несколько слов о $f_{\rm T}$. Значения $f_{\rm T}$ мало изменяются в снегопадах при существенных вариациях V_{\perp} . Эту особенность мы не можем объяснить. Возможно, это вызвано неконтролируемыми в эксперименте изменениями в структуре турбулентности в снегопадах или недостаточным качеством измерений в области частот около $f_{\rm T}$.

Среди всей совокупности измерений мы особо выделяем одновременные измерения с разными Ω на одной и той же трассе. Они сделаны на трассе 130 м или на трассе 390 м. В таких измерениях автоматически реализуются одинаковые условия для двух пучков, но, по-прежнему, остается проблема их установления. Уточняем: на трассе 130 м в коллмированном пучке $\Omega = 54$ и в УРП $\Omega =$ = 7,5 · 10⁻²; на трассе 390 м $\Omega = 4,5$ и 2,5; $\Omega = 18$ и 0,1. Во всех трех случаях β^2 меньше при меньших Ω , что качественно согласуется с расчетами для грубодисперсной рассеивающей среды без турбулентности, а также с турбулентной атмосферой без осадков в области слабых флуктуаций.

Форма эмпирических распределений вероятностей в снегопаде изменяется и зависит от отношения вкладов турбулентности и осадков во флуктуациях. Их роль существенно изменяется в зависимости от интенсивности, размеров частиц снегопада и параметров пучка. Для установления таких зависимостей нужны многовариантные измерения при близких (а лучше при одинаковых) характеристиках среды, что фактически редко удается, так что неизбежны неопределенности в зависимостях. Мы в разд. 3—5 остановились только на УРП и тем самым изначально сузили задачу, что и позволило нам выйти на конкретное решение.

Мы отдаем предпочтение гамма-распределению. Оно неплохо описывает большинство замеченных особенностей в ЭРВ при изменении параметра его формы (α_0) от 0 до 15. Отдельно подчеркнем, что мы не нашли физического объяснения гамма-распределению. Некоторые соображения на этот счет приведены в [22].

Мы экспериментально продемонстрировали принципиальную возможность установления типа погоды при малых замутнениях приземного слоя атмосферы путем измерения частоты максимума в спектре рассеянного излучения вблизи фокусированного лазерного пучка и скорости ветра. Нами разрабатывается упрощенный вариант измерителя.

Результаты сравнения вполне определенны и, по-нашему мнению, не требуют дополнительных комментариев. При сравнении мы взяли известные нам результаты для турбулентной атмосферы без осадков. Они в главном подтверждены теоретическими расчетами. Поэтому сравнение наших данных в снегопадах с результатами теоретических работ в турбулентной среде вряд ли даст принципиально иные сведения.

Выводы

1. Структурная характеристика флуктуаций показателя преломления C_n^2 в снегопадах без

хлопьев уменьшается и, по нашим данным, не превышает 4 \cdot $10^{-15}~{\rm cm}^{-2/3}.$

2. Индекс мерцания в узком расходящемся пучке увеличивается с ростом расходимости пучка.

3. Логарифмически-нормальное распределение не описывает ЭРВ, а гамма-распределение лучше пригодно для описания эмпирических распределений вероятностей лазерного сигнала в пучке.

 Максимальная случайная глубина модуляции интенсивности излучения лазерного пучка в атмосфере без осадков превышает таковую в снегопадах.

5. Максимальная частота флуктуаций в снегопадах сравнима или немного превышает таковую в турбулентной атмосфере без осадков.

6. При малых замутнениях по спектру рассеянного излучения и скорости ветра можно уверенно различать дымку и осадки в виде дождя.

Авторы благодарят А.Г. Борового, Р.Ш. Цвыка, В.Н. Ужегова и других наших коллег за полезные обсуждения данной проблемы.

- 1. Жуков А.Ф., Вострецов Н.А. Влияние диаметра приемника на флуктуации светового потока при распространении узкого расходящегося лазерного пучка в снегопаде. Ч. 1. Уровень флуктуаций // Оптика атмосф. и океана. 1996. Т. 9. № 8. С. 1058–1068.
- 2. Крутиков В.А. О расчете статистических характеристик оптического излучения в среде с крупномасштабными дискретными неоднородностями // Изв. вузов. Радиофиз. 1980. Т. 23. № 12. С. 1434–1446.
- 3. Монин А.С., Яглом А.М. Статистическая гидромеханика. Ч. 1, 2. М.: Наука. С. 1965–1967.
- Татарский В.И. Распространение волн в турбулентной атмосфере. М.: Наука, 1967. 548 с.
- 5. Жуков А.Ф., Вострецов Н.А. Влияние диаметра приемника на флуктуации светового потока при распространении узкого расходящегося лазерного пучка в снегопаде. Ч. 2. Автокорреляционная функция // Оптика атмосф. и океана. 2000. Т. 13. № 11. С. 1037– 1043.
- 6. Крутиков В.А. Флуктуации интенсивности гауссова оптического пучка в среде с крупномасштабными дискретными неоднородностями // Проблемы оптики атмосферы. Новосибирск: Наука, 1983. С. 141–150.
- 7. Лоуренс Р.С., Стробен Д.В. Эффекты, существенные для оптической связи, которые возникают при распространении света в нерассеивающей атмосфере // Обзор. ТИИЭР. 1970. Т. 58. № 10. С. 130–153.
- 8. Гурвич А.С., Кон А.И., Миронов В.Л., Хмелевцов С.С. Лазерное излучение в турбулентной атмосфере. М.: Наука, 1976. 275 с.
- 9. Миронов В.Л. Распространение лазерного пучка в турбулентной атмосфере. Новосибирск: Наука, 1981. 246 с.
- Зуев В.Е., Банах В.А., Покасов В.В. Оптика турбулентной атмосферы. Л.: Гидрометеоиздат, 1988. 270 с.
- 11. Боровой А.Г. Распространение света в осадках // Изв. вузов. Раднофиз. 1982. Т. 25. № 4. С. 391-400.
- Жуков А.Ф. Об уровне флуктуаций интенсивности узкого расходящегося лазерного пучка в снегопаде // Оптика атмосф. и океана. 1993. Т. 6. № 1. С. 33–36.
- 13. Жуков А.Ф., Цвык Р.Ш. Флуктуации интенсивности лазерного пучка в снегопаде // Изв. АН СССР. Физ. атмосф. и океана. 1980. Т. 16. № 2. С. 164–171.
- 14. Гурвич А.С., Покасов Вл.В. Частотные спектры сильных флуктуаций лазерного излучения в турбулентной атмосфере // Изв. вузов. Радиофиз. 1973. Т. 16. № 6. С. 913–917.

О флуктуациях излучения лазерного пучка в приземной атмосфере при снегопадах

- 15. Лукин И.П. Флуктуации световой волны в рассеивающей среде. Гауссов пучок. Деп. ВИНИТИ, № 2551-78. 1978. 33 с.
- 16. Миронов В.Л., Тузова С.И. Флуктуации интенсивности лазерного излучения в среде с крупными неоднородностями // Изв. вузов. Радиофиз. 1980. Т. 23. № 12. С. 1453–1463.
- 17. Жуков А.Ф., Кабанов М.В., Цвык Р.Ш. Дисперсия флуктуаций интенсивности в лазерных пучках при снегопаде // Изв. АН СССР. Физ. атмосф. и океана. 1985. Т. 21. № 2. С. 147–153.
- 18. Жуков А.Ф., Цвык Р.Ш., Вострецов Н.А. О влиянии радиуса кривизны фазового фронта на флуктуации интенсивности лазерного пучка в снегопаде // Оптика атмосф. 1988. Т. 1. № 4. С. 30–35.
- Consortini A., Cochetti F., Churnside S.H., Hill R.I. Inner-scale effect on irradiance variance measured for weak-to-strong atmospheric scintillation // J. Opt. Soc. Amer. A. 1993. V. 10. № 11. P. 2354–2362.
- 20. Гурвич А.С., Казарян Р.А., Ломадзе С.О., Погосян К.П., Покасов Вл.В. Частотные спектры флуктуаций интенсивности лазерного излучения на волнах 0,63 и 10,6 мкм в атмосфере // Изв. вузов. Раднофиз. 1975. Т. 18. № 4. С. 610-613.
- 21. Галахов В.Н., Ефремов А.В., Жуков А.Ф., Рейно В.В., Цвык Р.Ш. Экспериментальное исследование флуктуаций интенсивности оптического излучения, распространяющегося в приземном слое атмосферы при осадках // Изв. АН СССР. Физ. атмосф. и океана. 1976. Т. 12. № 12. С. 1251–1260.

- 22. Вострецов Н.А., Жуков А.Ф. Плотность вероятностей флуктуаций светового потока узкого расходящегося лазерного пучка в снегопаде // Оптика атмосф. и океана. 1995. Т. 8. № 12. С. 1790–1798.
- 23. Левин Л.М. Исследования по физике грубодисперсных аэрозолей. М.: Изд. АН СССР, 1961. 267 с.
- 24. Хан Г., Шапиро С. Статистические модели в инженерных задачах. М.: Мир. 1966. 395 с.
- 25. Вострецов Н.А., Жуков А.Ф. О флуктуациях лазерного сигнала в атмосферных осадках // Оптика атмосф. и океана. 2003. Т. 16. № 1. С. 1790– 1798.
- 26. Вострецов Н.А., Жуков А.Ф. О флуктуациях интенсивности рассеянного излучения фокусированного лазерного пучка в снегопаде // Оптика атмосф. и океана. 1994. Т. 7. № 1. С. 24–28.
- 27. Вострецов Н.А., Жуков А.Ф. Флуктуации интенсивности рассеянного излучения фокусированного лазерного пучка в приземном слое атмосферы. Ч. 1. Снегопад // Оптика атмосф. и океана. 1999. Т. 12. № 8. С. 689–693.
- 28. Вострецов Н.А., Жуков А.Ф. Флуктуации интенсивности рассеянного излучения фокусированного лазерного пучка в приземном слое атмосферы. Ч. 2. Дождь, туман // Оптика атмосф. и океана. 1999. Т. 12. № 12. С. 1165–1166.
- 29. Clark J.R., Baird J.R., Reardeh R.S. Low-visibility optical communication received signal levels as function of receiver field of view // Appl. Opt. 1976. V. 15. № 2. P. 314–315.

A.F. Zhukov, N.A. Vostretsov. On laser beam fluctuations in the surface atmosphere during snowfall.

The turbulent component of the radiation scintillation index (β_1^2) for collimated laser beams is used to estimate the structure characteristic (C_n^2) of air refractive index fluctuations in snowfalls. The β_r^2 component is determined in finely disperse snowfalls from simultaneous measurements of the frequency spectrum and the scintillation index (β^2). The structure characteristic C_n^2 is estimated using only those spectra, which included both the turbulent and hydrometeor maximums with a deep minimum between them. In snowfalls the structure characteristic C_n^2 decreases and does not exceed $4 \cdot 10^{-15}$ cm^{-2/3}. No regular dependence was found between C_n^2 and the volume scattering coefficient. The scintillation index β^2 increases with the increasing divergence of a narrow laser beam. It does not exceed the value maximum possible in the turbulent atmosphere without precipitation. The probability distribution in a narrow divergent beam is not the lognormal, but the gammadistribution in the most cases. At low atmospheric turbidity, from the spectrum of scattered radiation near the focused beam and the wind velocity it is possible to reliably distinguish the haze and precipitation (rain) situations. The error of C_n^2 estimation, validity of the used assumptions, and the physical reasons for the features observed are discussed.