УДК 62-533

Г. Л. Дегтярев, А.В. Маханько, С.М. Чернявский, А.С. Чернявский

ИТЕРАЦИОННЫЙ МЕТОД ЮСТИРОВКИ СЕГМЕНТНОГО ЗЕРКАЛА ПО ФУНКЦИОНАЛАМ ИЗОБРАЖЕНИЯ ПРОТЯЖЕННОГО ИСТОЧНИКА

Предлагается аппаратная реализация итерационного метода Ньютона в задаче модального восстановления и компенсации угловых аберраций сегментного зеркала по функционалам изображения протяженного источника. Приведены результаты численного моделирования для 6-сегментного зеркала с учетом шумов измерения.

Рассматривается адаптивная оптическая система (AOC) с *n*-сегментным зеркалом, у которой функция аберраций волнового фронта (ВФ) $\Phi(\xi, \eta)$ на апертуре с достаточной точностью представляется отрезком ряда по некоторой линейно независимой системе функций { $\Phi_k(\xi, \eta)$ }:

$$\Phi(\xi,\eta) = \sum_{k=1}^{N} \zeta_k \Phi_k(\xi,\eta) , \qquad (1)$$

где $\zeta = (\zeta_1, \zeta_2, ..., \zeta_N)$ – неизвестный вектор мод. В качестве линейно независимой системы функций использованы кусочно-линейные функции, для которых функция аберраций в пределах *k*-го сегмента

$$\Phi_k(\xi, \eta) = (\alpha_k + \beta_k(\xi - \xi_k) + \gamma_k(\eta - \eta_k)) \,\delta(\xi - \xi_k, \eta - \eta_k) \,,$$

где (ξ_k , η_k) = \mathbf{r}_k – координаты центра *k*-го сегмента; β_k , γ_k – локальные наклоны ВФ (угловые аберрации), нормированные на отношение (λ/a); λ – длина волны; *a* – характерный размер апертуры (радиус).

Предполагается, что АОС осуществляет компенсацию вектора мод ζ , используя вектор управления $\zeta_u = (\zeta_{u1}, \zeta_{u2}, ..., \zeta_{uN})$. В этом случае задача управления сводится к определению управления, при котором $\zeta - \zeta_u \rightarrow 0$.

Уравнение относительно вектора управления для точечного источника имеет вид

$$H(\mathbf{f}, z, \boldsymbol{\zeta}_u) = J(\mathbf{f}, z, \boldsymbol{\zeta}), \qquad (2)$$

где $H(\mathbf{f}, z, \zeta_u)$ – оптическая передаточная функция (ОПФ) на относительной пространственной частоте $\mathbf{f} = (\xi, \eta)$ при заданной расфокусировке *z* и неизвестном векторе мод $\boldsymbol{\zeta}$; $J(\mathbf{f}, z; \boldsymbol{\zeta})$ – измеренная ОПФ. С точностью до постоянного множителя [1]

$$H(\mathbf{f}, z, \boldsymbol{\zeta}) = \int_{-\infty}^{\infty} G(\boldsymbol{\xi} + \boldsymbol{\xi}', \boldsymbol{\eta} + \boldsymbol{\eta}') \ G_0(\boldsymbol{\xi} + \boldsymbol{\xi}', \boldsymbol{\eta} + \boldsymbol{\eta}') \times \\ \times G^*(\boldsymbol{\xi}', \boldsymbol{\eta}') \ G_0^*(\boldsymbol{\xi}', \boldsymbol{\eta}') \ \partial r' , \qquad (3)$$

где $G_0(\xi, \eta) = P(\xi, \eta)e^{-iz(\xi + \eta)/2}$ – функция зрачка, содержащая аберрации, соответствующие заданной расфокусировке *z*; $P(\xi, \eta)$ – характеристическая функция зрачка; $G = e^{i2\pi\Phi(\xi, \eta)}$ – функция зрачка с неизвестной функцией аберраций; «*» – символ комплексного сопряжения. Предлагается решать уравнение (2), исходя из итерационной схемы метода Ньютона:

$$\varsigma_{u}^{n+1} = \left[\frac{\partial H(\mathbf{f},z;\boldsymbol{\zeta}_{u}^{n})}{\partial \boldsymbol{\zeta}}\right]^{-1} \left[J(\mathbf{f},z;\boldsymbol{\zeta}) - H(\mathbf{f},z;\boldsymbol{\zeta}_{u}^{n}) + \frac{\partial H(\mathbf{f},z;\boldsymbol{\zeta})}{\partial \boldsymbol{\zeta}} \zeta_{u}^{n}\right].$$
(4)

Принимая начальное приближение $\zeta_u^0 = 0$, на первом шаге управление

$$\boldsymbol{\zeta}_{u}^{1} = \left[\frac{\partial H(\mathbf{f}, z; \mathbf{0})}{\partial \boldsymbol{\zeta}}\right]^{-1} \left[J(\mathbf{f}, z; \boldsymbol{\zeta}) - H(\mathbf{f}, z; \mathbf{0})\right],$$
(5)

которое сразу отрабатывает АОС, и далее получаем схему (4), но уже с новой функцией $J(\mathbf{f}, z; \boldsymbol{\zeta} - \boldsymbol{\zeta}_u^1)$. В дальнейшем алгоритм переходит к новому шагу в соответствии с (5). Поэтому для точной аппаратной реализации схема (4) приобретает упрощенный вид

$$\frac{\partial H(\mathbf{f}, z; 0)}{\partial \boldsymbol{\zeta}} \, \boldsymbol{\zeta}_{u}^{n+1} = \Delta H(\mathbf{f}, z; \boldsymbol{\zeta}) \,, \tag{6}$$

где $\Delta H(\mathbf{f}, z; \boldsymbol{\zeta}) = J(\mathbf{f}, z; \boldsymbol{\zeta}) - H(\mathbf{f}, z; 0)$. Подробно аппаратная реализация алгоритма (6) рассмотрена в [2]. В [3] показано, что ОПФ в области малых пространственных частот, величина которых имеет смысл относительного смещения в плоскости зрачка на вектор $\mathbf{f} = -(\xi, \eta)$ в формуле (3), принимает, с точностью до постоянного множителя, упрощенный вид, позволяющий анализировать матрицу производных:

$$H(\mathbf{f}, z; \boldsymbol{\zeta}) = \sum_{k=1}^{n} \mathrm{e}^{-iz\mathbf{f}r_{k}} \mathrm{e}^{i2\pi \mathbf{f}\boldsymbol{\zeta}_{k}} \,. \tag{7}$$

На малых пространственных частотах влияние фазировки ничтожно мало, поэтому моды сегмента в

(7) $\zeta_k = (\beta_k, \gamma_k)$. Это означает, что на таких частотах задача юстировки отделяется от задачи фазировки. Кроме того, задача юстировки на малых пространственных частотах позволяет использовать итерационную схему (6), когда источник является протяженным [3], с помощью приближенного равенства

$$H(\mathbf{f}, z; \boldsymbol{\zeta}) \approx [H(\mathbf{f}, 0; 0) + i2\pi S \mathbf{f} \boldsymbol{\zeta}_m] J(\mathbf{f}, z; \boldsymbol{\zeta}) / J(\mathbf{f}, 0; \boldsymbol{\zeta}) , (8)$$

где S – площадь апертуры зрачка; ζ_m – средний наклон ВФ, определяемый моментами первого порядка от распределения интенсивности I(x, y) в изображении:

$$\boldsymbol{\zeta}_{m} = \left(\frac{M_{10}}{M_{00}}, \frac{M_{01}}{M_{00}}\right);$$
$$M_{st} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} I(x, y) x^{s} y^{t} dx dy,$$

и может быть измерен. Отметим, что измерение ОП Φ в (8) ведется в двух плоскостях, соответствующих $z \neq 0$ и z = 0.

В работах [2, 3] задача определения вектора мод сводилась к решению системы уравнений

$$\frac{\partial H(f_j, z; 0)}{\partial \boldsymbol{\zeta}} \zeta_u^{n+1} = \Delta H(f_j, z; \boldsymbol{\zeta}), j = \overline{1, N}, \qquad (9)$$

получаемых из (6) выбором N частот, обеспечивающих наилучшую обусловленность матрицы производных, элементы которой легко получить из (7):

$$\frac{1}{i2\pi} \left\{ \frac{\partial H(\mathbf{f}, z; \mathbf{0})}{\partial \boldsymbol{\zeta}} \right\}_{N \times n} = \left\{ \mathbf{f} \mathbf{e}^{-iz\mathbf{f} r_k} \right\}_{N \times n}.$$

Задача выбора частот f_j , имеющая размерность 2N, решалась методом подбора и сильно усложнялась с увеличением числа сегментов. Аналитическое решение было найдено только для трехсегментного зеркала.

В данной статье предлагается определение управления ζ_u по функционалам изображения точечного источника с помощью итерационной схемы (6) в следующем виде:

$$\frac{\partial \Re_j [H(\mathbf{f}, z; 0)]}{\partial \boldsymbol{\zeta}} \zeta_u^{n+1} = \Re_j [\Delta H(\mathbf{f}, z; \boldsymbol{\zeta})], \quad j = \overline{1, N}, \quad (10)$$

где \Re_j – линейные функционалы от H как функции пространственной частоты. Такой метод позволяет выбрать функционалы \Re_j так, чтобы матрица производных в уравнении (10) имела заданные свойства, и, кроме того, использование всей области малых частот исключает опасность отсутствия выборочных частот f_j в источнике излучения, наличие которых является необходимым условием работы итерационной схемы (9). Условие для определения функционала запишем в виде

$$\int_{\Theta(\mathbf{f})} \frac{\partial H(\mathbf{f}, z; \mathbf{0})}{\partial \boldsymbol{\zeta}_k} F_j(\mathbf{f}) \, d\mathbf{f} = \delta_{jk} \,, \qquad k = \overline{1, N} \,, \tag{11}$$

где δ_{jk} – символ Кронекера; $\theta(\mathbf{f})$ – область малых частот интегрирования. Неизвестную скалярную функцию $F_i(\mathbf{f})$ рассмотрим как

$$F_{j}(\mathbf{f}) = \sum_{s=1}^{n} \left[\frac{\partial H(\mathbf{f}, z; \mathbf{0})}{\partial \boldsymbol{\zeta}_{s}} \right]^{*} \lambda_{js} .$$
(12)

Таким образом, определение функционала свелось к выбору вектора λ_{j} . Подстановка (12) в (11) дает систему уравнений для λ_{j}

$$i2\pi\sum_{s=1}^{n}\left|\int_{\Theta(\mathbf{f})}\frac{\partial H(\mathbf{f},z;0)}{\partial \boldsymbol{\zeta}_{k}}\left(\frac{\partial H(\mathbf{f},z;0)}{\partial \boldsymbol{\zeta}_{s}}\right)^{*}d\mathbf{f}\right|\lambda_{js}=\delta_{jk},$$

$$k=\overline{1,n},$$

или

$$j2\pi\,\Gamma\lambda_j = \mathbf{c}_j\,,\tag{13}$$

где Γ – ганкелева матрица размером $n \times n$ с блочными элементами

$$\Gamma_{ks} = \int_{\Theta(\mathbf{f})} \frac{\partial H(\mathbf{f}, z; \mathbf{0})}{\partial \boldsymbol{\zeta}_{k}} \left[\frac{\partial H(\mathbf{f}, z; \mathbf{0})}{\partial \boldsymbol{\zeta}_{s}} \right]^{*} d\mathbf{f} = \mathbf{f}^{\mathrm{T}} \mathbf{f} \int_{\Theta(\mathbf{f})} e^{-iz \, \mathbf{f}(r_{k} - r_{s})} d\mathbf{f};$$

 \mathbf{c}_j – вектор с нулевыми элементами, кроме $c_{jk} = 1$. Элементы вектора производных $dH(\mathbf{f}, z; 0)/d\boldsymbol{\zeta}$ являются линейно независимыми функциями, поэтому решение системы (13) для λ_j , j = 1, N, существует. Такой выбор векторов \mathbf{c}_j определяет единичную матрицу левой части (10), поэтому итерационная схема принимает вид

$$\boldsymbol{\zeta}_{u}^{n+1} = \Re_{j} \left[\Delta H(\mathbf{f}, z; \boldsymbol{\zeta}) \right], \qquad j = \overline{1, N} .$$
(14)

Выбранные функционалы решают вопрос осуществимости итерационной схемы, остается обеспечить ее сходимость. Этого можно достичь подбором параметров оптической системы. Параметрами являются: координата плоскости регистрации изображения z, область измерения и параметр тихоновской регуляризации.

Решение системы (14) проводилось для функционалов (11), где интегрирование осуществлялось в круге радиусом $|\mathbf{f}| = 0,15$ для мод аберраций порядка w = 0,64 при расфокусировке z = 5. В принятых относительных координатах w = 0,61 соответствует смещению центрального луча сегмента на радиус кружка Эйри. Первоначальное распределение мод полагалось равным $\pm w$.

Моделирование алгоритма юстировки сегментного зеркала проводилось в предположении, что измерение $J(\mathbf{f}, z; \boldsymbol{\zeta})$ известно в одной плоскости z = 0 в области $\theta(\mathbf{f})$, если источник точечный, и в плоскостях $z \neq 0$ и z = 0, если источник протяженный и неизвестный. Отношение $J(\mathbf{f}, z; \boldsymbol{\zeta})/J(\mathbf{f}, 0; \boldsymbol{\zeta})$ для (9) моделировалось как искаженный вариант отношения $H(\mathbf{f}, z; \boldsymbol{\zeta})/H(\mathbf{f}, 0; \boldsymbol{\zeta})$. Шум рассматривался как нормальная случайная величина с заданным стандартным отклонением, при котором максимальная ошиб-

ка в вычислении ζ по схеме (15) не превышает 5% от максимальной координаты $|\zeta| = w$.

На рисунке для 6-сегментного зеркала приведены относительные нормы изменения $||\zeta_s||/||\zeta_{max}||$ вектора скорректированных угловых наклонов ВФ. Кривыми 1 и 2 показана сходимость алгоритма для точечного и протяженного источников соответственно. Видно, что итерационный процесс сходится не к нулю, а к некоторой величине. Алгоритм компенсирует только те аберрации ВФ, которые описываются низкочастотными составляющими, что является следствием ограничения измерения ОПФ малыми пространственными частотами. Кривыми 3 и 4 показан итерационный процесс с учетом шума, накладываемого на измерение. Процесс является колебательным около некоторой величины.

Казанский государственный технический университет им. А.Н. Туполева

Поступила в редакцию 4 августа 1998 г.

G.L. Degtyarev, A.V. Makhan'ko, S.M. Chernyavskii, A.S. Chernyavskii. Iteration Method for Segment Mirror Adjustment using Functionals of Extended Source Image.

An apparatus realization of Newton iteration method is proposed for the problem of modal reconstruction and compensation of a segment mirror angular aberrations using functionals of an extended source image. The results of numerical simulation are presented for 6-segment mirror accounting for measurement noises.

^{1.} Борн М., Вольф Э. Основы оптики. М.: Наука, 1970. 527 с.

^{2.} Дегтярев Г.Л., Маханько А.В., Чернявский А.С. // Оптика атмосферы и океана. 1996. Т. 9. N 3. С. 402–405.

^{3.} Дегтярев Г.Л., Маханько А.В., Чернявский А.С. // Оптика атмосферы и океана. 1995. Т. 8. N 3. С. 388–392.