УДК 621.373.826

А.В. Карелин, О.В. Симакова

КИНЕТИЧЕСКАЯ МОДЕЛЬ ИК-ЛАЗЕРА С ЯДЕРНОЙ НАКАЧКОЙ НА СМЕСИ He-Ne-CCl4

Представлены подробная нестационарная кинетическая модель активной среды и результаты численных расчетов для лазера с ядерной накачкой на ИК-переходах атома хлора в смеси высокого давления He-Ne-CCl₄. На основе сравнения результатов расчета с экспериментом установлен механизм создания инверсии для рабочих переходов с длинами волн излучения 1,59 и 2,45 мкм. Определены оптимальные условия генерации.

Недавно появились сообщения о получении относительно мощной генерации в лазере с ядерной накачкой (ЛЯН) на атомарных переходах хлора в смеси He–Ne–CCl₄ [1]. Отличительной особенностью работы данного лазера оказалось чрезвычайно низкое (~10 мТорр) парциальное давление лазерно-активной компоненты среды при достаточно высоком давление буферных газов (1 атм He и 1 атм Ne). При этом механизм генерации остался неясным. В [1] было высказано лишь предположение о том, что наиболее вероятным механизмом заселения верхних лазерных уровней может быть ион-ионная рекомбинация отрицательных ионов хлора с положительными ионами инертных газов. Кроме того, в ней упоминалась возможная роль процессов диссоциативного возбуждения.

В данной статье представлены результаты теоретического исследования механизма возникновения генерации в рассматриваемом лазере. Была построена подробная нестационарная кинетическая модель лазера с ядерной накачкой на смеси He–Ne–CCl₄. На ее основе проводились расчеты кинетики плазмохимических процессов в активной среде (AC), а также мощности и кпд генерируемого излучения с $\lambda = 1,59$ и 2,45 мкм. Исходными данными (форма импульса накачки, состав смеси, пропускание зеркал) служили данные экспериментов [1]. Для численного моделирования использовался комплекс программ «ПЛАЗЕР» [2].

1. Кинетика плазмы в смеси He-Ne-CCl₄

В кинетической модели лазера на смеси He–Ne– CCl_4 рассматривались следующие компоненты плазмы: He^+ , He_2^+ , He_3^+ , He^* , He_2^* , Ne_1^+ , Ne_2^+ , Ne_3^+ , Ne_3^* , Ne_2^* , $HeNe_2^*$, $HeNe_3^+$, H

типлетах и обладают наибольшими статистическими весами. Поэтому им приписывалась вся заселенность соответствующего мультиплета, что с хорошей точностью соответствует больцмановскому внутримультиплетному распределению заселенностей.

Всего в кинетической модели рассматривалось около 250 плазмохимических реакций (ПХР) с участием 34 реагентов, для которых решалась жесткая система нестационарных уравнений баланса. Концентрации электронов N_e находились из условия квазилинейности плазмы. Кроме того, решались уравнения энергетического баланса для температур газа T_g и электронов T_e . Учет рабочего излучения проводился в «нульмерном» приближении [2].

Для расчета ненасыщенного коэффициента усиления α_0 уширение линии рабочего перехода задавалось суммой столкновительной γ_c , обусловленной давлением буферных газов, и доплеровской $\gamma_{\rm Д}$ ширин. Столкновительная ширина определялась теоретически и корректировалась по найденному в эксперименте значению α_0 . В модели использовалось значение $\gamma_{\rm c} = 10^{10}~{\rm c}^{-1} \cdot {\rm atm}^{-1}$. Паразитное поглощение рабочего излучения в АС и зеркалах резонатора эффективно учитывалось введением коэффициента $\kappa^- = 1,1\cdot 10^{-5}~{\rm cm}^{-1}$.

Плазмохимические реакции с взаимным участием Не и Ne взяты из нашей кинетической модели лазера на смеси He–Ne–Ar– H_2 [4], где можно найти подробное описание релаксации He-Ne плазмы.

Под действием жесткого ионизатора релаксационный поток с участием гелиевых и неоновых компонент ведет к наработке ионов и возбужденных состояний гелия и неона. При соотношении He:Ne = 1:1 основными компонентами в такой смеси являются ионы и возбужденные состояния неона. Наиболее представлен молекулярный ион Ne_2^+ , концентрация которого превосходит остальные более чем на порядок.

Характерной чертой смеси с содержанием CCl_4 является высокая концентрация отрицательных ионов хлора Cl^- , сильно влияющих на кинетику плазмы. Эффективная наработка последних происходит в реакциях диссоциативного прилипания электронов:

$$CCl_n + e = CCl_{n-1} + Cl^-,$$
(1)

$$Cl_2 + e = Cl + Cl^-,$$
 (2)

где n изменяется от 4 до 1.

Константы скоростей для (1), (2) взяты из [5, 6] и задавались в виде сплайнов. Поскольку T_e в расчетах не превышало 1 эВ, конкурирующие с (2) процессы возбуждения и ионизации Cl_2 электронами не учитывались в [6].

Ионы Cl^- участвуют в процессах тройной ионионной рекомбинации с атомарными и молекулярными ионами гелия и неона с образованием промежуточных комплексов $NeCl^*$, $HeCl^*$, энергия возбуждения которых существенно превосходит потенциал ионизации атома хлора. Распад указанных комплексов является главным источником образования ионов Cl^+ . Другим, но более слабым источником образования Cl^+ является перезарядка атомов хлора на ионах буферных газов Ne_2^+ , He_2^+ , Ne_2^+ , He_2^+ .

Далее в реакциях перезарядки и трехчастичной конверсии образуются молекулярные ионы Cl_2^+ :

$$Cl^{+} + Cl_{2} = Cl_{2}^{+} + Cl,$$
 (3)

$$C1^{+} + C1 + M = C1_{2}^{+} + M, M = He, Ne.$$
 (4)

Полученные из условия наилучшего совпадения расчетных и экспериментальных данных константы скоростей для этих реакций принимались равными $1.2\cdot 10^{-10}~{\rm cm}^3/{\rm c}$ и $5\cdot 10^{-31}~{\rm cm}^6/{\rm c}$.

2. Механизмы создания инверсии на рабочих переходах

Оба исследуемых рабочих перехода $3d^4F_{9/2}$ – $4p^4D_{7/2}$ (1,59 мкм) и $3d^4D_{7/2}$ – $4p^4D_{7/2}$ (2,45 мкм) имеют общий нижний уровень, и максимальная выходная мощность достигается при одном и том же значении парциального давления $CCl_4 - 30$ мТорр [1]. Поэтому в модели способ создания инверсии на данных переходах предполагался одинаковым.

В результате численного моделирования ЛЯН на ИК-переходах атома хлора было установлено, что основными каналами накачки верхних рабочих уровней являются процессы тройной рекомбинации атомарных ионов Cl^+ с электронами, диссоциативная рекомбинация молекулярных ионов Cl_2^+ , CCl_2^+ и ионионная рекомбинация возбужденного иона CCl_2^{+*} с отрицательным ионом Cl^- :

$$Cl^{+} + e + M = Cl^{*} + M,$$
 (5)

$$Cl^{+} + e + e = Cl^{*} + e,$$
 (6)

$$Cl_2^+ + e = Cl^* + Cl,$$
 (7)

$$CCl_2^+ + e = Cl^* + CCl,$$
 (8)

$$CCl_{2}^{+*} + Cl^{-} = Cl^{*} + CCl_{2}.$$
 (9)

Полные константы скоростей реакций (5)–(9) соответственно равны $2 \cdot 10^{-31} T_g T_e^{-3.5}$ см 6 /с, $5.4 \cdot 10^{-27} T_e$ см 6 /с, $2 \cdot 10^{-7} T_e^{-0.5}$ см 3 /с, $2 \cdot 10^{-7} T_e^{-0.5}$ см 3 /с, $2 \cdot 10^{-6}$ см 3 /с (при полном давлении буферного газа 2 атм). Температура электронов и газа в константах скоростей измеряется в электронвольтах. Далее в модели полагалось, что на верхний рабочий уровень (в.р.у.) линии 1,59 мкм попадает около 50% от полного потока реакций (5)–(7), 60% от потока реакции (8) и (10)% – от потока реакции (9). Для уровня $3d^4D_{7/2}$ эти величины составляют соответственно 10, 20 и 0%.

Молекулярные ионы $\operatorname{CCl}_2^{+*}$ и CCl_2^{+} образуются в реакциях Пеннинга молекул CCl_4 и CCl_2 с возбужденными атомами и молекулами буферного газа, а также в результате перезарядки атомарных и молекулярных ионов инертных газов на CCl_4 и CCl_2 . Эффективная реакция (9) является на самом деле процессом, где сначала образуются возбужденные нестабильные комплексы, после разлета которых образуются атомы хлора в различных возбужденных состояниях.

Относительный вклад процессов (5)–(9) в накачку в.р.у. зависит от содержания ССl₄ в рабочей смеси. На рис. 1 приведена зависимость потоков накачки от парциального давления ССl₄. При давлениях, не превышающих 10 мТорр, процессы (5), (6) играют определяющую роль. В интервале давлений 10–100 мТорр в накачке верхних уровней наиболее активно участвует процесс (7), его поток достигает максимального значения при давлении Ссl₄, равном 30 мТорр. В области давлений свыше 60 мТорр в накачку включается процесс (8) и при содержании ССl₄, большем 100 мТорр, является преобладающим.

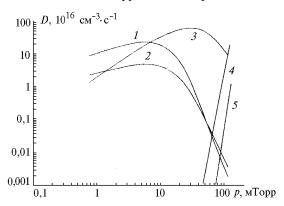


Рис. 1. Зависимости полных потоков D реакций (1)–(5), участвующих в накачке верхних лазерных уровней от парциального давления CCl_4 (давление смеси 2 атм, He:Ne = 1:1, λ = 1,59 мкм, r_1 = r_2 = 0,998). I – (5), 2 – (6), 3 – (7), 4 – (8), 5 – (9)

Очистка нижнего рабочего уровня происходит за счет радиационного распада, а также неупругих столкновений с гелием и неоном. Константа тушения атомами буферного газа была принята равной 10^{-12} см 3 /с.

Константы скоростей девозбуждения уровней электронами оценивались на основе аппроксимации Ван-Реджемортера. При этом скорости прямых и обратных процессов связывались принципом детального

равновесия. Следует, однако, отметить, что в условиях экспериментов [1] концентрация электронов относительно невелика (10^{12} – 10^{13} см⁻³), поэтому перемешивание ими рабочих уровней не вносит существенных изменений в распределение заселенностей на фоне других релаксационных процессов.

Как отмечалось выше, все расчеты проводились в приближении жесткого ионизатора. При этом влияние трековой структуры плазмы, образованной осколками деления, на выходные параметры лазера не учитывалось, так как характерные времена релаксационных процессов в активной среде ЛЯН на смеси Не-Ne-CCl₄, приводящих к заселению в.р.у., в условиях экспериментов [1] существенно превосходят характерные времена жизни трека, лежащие, согласно [9], в области от 1 до 100 нс. Более того, поскольку влияние трековой структуры на характеристики генерации принципиально возможно только в том случае, когда треки не перекрываются (т.е. при относительно малой мощности накачки) и характерные времена заселения верхних рабочих уровней и развития генерации не превышают характерного времени жизни трековой неоднородности, а скорость заполнения в.р.у. пропорциональна мощности накачки, то трековой структурой в оптимальных условиях генерации для нашей смеси можно пренебречь всегда. Этот вывод, по-видимому, касается всех ЛЯН, у которых в.р.у. заселяется в процессах рекомбинации с участием электронов. Для других лазеров, возбуждаемых осколками деления, требуется более детальный анализ на основе сформулированного выше общего утверждения. Приведенные здесь соображения косвенно подтверждаются результатами исследований [9], где учет диффузии компонентов He-Cd плазмы из первоначальной области трека приводил к существенному уменьшению амплитуды флуктуаций, а возрастание мощности накачки приводило к убыванию влияния трековой структуры на кинетические процессы в плазме.

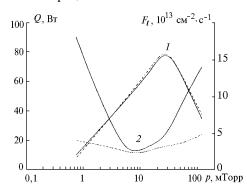


Рис. 2. Зависимость мощности излучения Q(I) и пороговой плотности потока нейтронов F_t (2) от парциального давления CCl_4 (давление смеси 2 атм, He:Ne = 1:1, λ = 1,59 мкм, r_1 = r_2 = 0,998). Сплошная линия – эксперимент, штриховая – расчет

3. Результаты расчета и обсуждение

Сравнение полученных на основе расчета по данной модели и экспериментально измеренных ха-

рактеристик лазерной генерации (выходной мощности и пороговой плотности потока нейтронов) приведено на рис. 2—4.

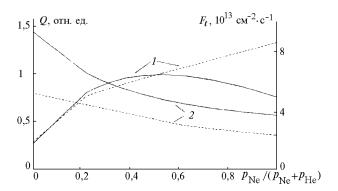


Рис. 3. Зависимость мощности излучения Q(I) и пороговой плотности потока нейтронов $F_t(2)$ от относительного содержания неона в смеси He–Ne-CCl $_4$ (давление смеси 2 атм, давление CCl $_4$ 0,03 Topp, $\lambda=1,59$ мкм, $r_1=r_2=0,998$)

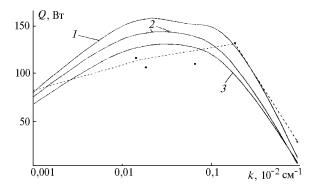


Рис. 4. Зависимость мощности излучения Q от коэффициента полезных потерь для давлений Ccl₄: I-30 мТорр, 2-15 мТорр, 3-60 мТорр. Сплошная линия – расчет, пунктир – эксперимент ($\lambda=1.59$ мкм, давление смеси 2 атм)

Максимум выходной мощности в зависимости от парциального давления CCl_4 при неизменном давлении буферного газа 2 атм и соотношении He:Ne=1:1 достигается при $p_{CCl_4}=30$ мТорр (см. рис. 2). Он обусловлен конкуренцией процессов роста концентраций [Cl] и $[Cl_2]$ и, вследствие этого, концентрации $[Cl_2^{\dagger}]$ в реакциях (3) и (4), с одной стороны, и уменьшением числа электронов и роста [Cl] в процессах (1), (2) — с другой. При давлениях CCl_4 , больших 30 мТорр, генерацию ухудшают также перезарядка Cl_2^{\dagger} на атомарном углероде, нарабатывающемся в результате различных Π XP, и процессы тушения в.р.у. атомарным и молекулярным хлором.

Минимальное значение пороговой плотности потока нейтронов на линии 1,59 мкм соответствует парциальному давлению CCl_4 , лежащему в области 7–8 мТорр (см. рис. 2). При малых (околопороговых) мощностях накачки верхний рабочий уровень $3d^4F_{9/2}$ заселяется преимущественно в процессе ионионной рекомбинации возбужденных молекулярных ионов CCl_2^{+} с отрицательным ионом Cl_2^{-} (9). Нали-

чие оптимума на зависимости пороговой плотности потока нейтронов от давления $\mathrm{CCl_4}$ объясняется конкуренцией процессов образования $\mathrm{CCl_2^{\dagger *}}$ и их исчезновением в реакциях перезарадки на молекулах $\mathrm{CCl_4}$, а также тушением в.р.у. молекулами $\mathrm{CCl_4}$ в реакции

$$Cl^* + CCl_4 = CCl_3 + Cl_2.$$
 (10)

Следует отметить, что привлечение ион-ионной рекомбинации возбужденных ионов $\mathrm{CCl}_2^{\dagger*}$ потребовалось для описания именно пороговых характеристик генерации, хотя никакой достоверной информацией о них мы не располагаем. Однако можно предположить, что значительная часть молекулярных ионов $\mathrm{CCl}_2^{\dagger*}$, образующихся в реакциях перезарядки атомарных и молекулярных ионов инертных газов на CCl_4 , находится в различных электронно-возбужденных состояниях.

Зависимость выходной мощности излучения от относительного содержания неона в смеси при постоянном суммарном давлении 2 атм приведена на рис. 3. В эксперименте выявлено наличие оптимума по давлению неона, достигаемого при соотношении компонент He:Ne = 1:1. С последующим добавлением неона наблюдался спад мощности. Вероятной причиной этого ухудшения генерации в эксперименте, на наш взгляд, является рост неравномерности энерговыделения по сечению канала с ростом давления неона. Эффективность энерговклада на оси кюветы в чистом неоне с учетом этого фактора ухудшается почти вдвое, согласно оценке на основе работы [10].

Нами проводилось также численное исследование зависимости выходной мощности излучения $\lambda = 1,59$ мкм от коэффициента полезных потерь $\kappa = 1/2L \cdot \ln(1/(r_1 \cdot r_2))$ (L – активная длина резонанса; r_1 , r_2 — коэффициенты пропускания зеркал) (см. рис. 4, кривая 1). Максимум расчетной мощности соответствует значению $\varkappa \approx 0.5 \cdot 10^{-3} \text{ см}^{-1}$ (пропускание зеркал около 12-14%), что заметно ниже, чем получено в эксперименте, но при этом имеет более высокую амплитуду. Учет того факта, что концентрация примесей по порядку величины близка к концентрации лазерноактивной компоненты, заставил нас предположить, что на характере экспериментальной кривой могла отразиться разная степень очистки лазерной кюветы в различных опытах, а также некоторая неточность в оценке начальной концентрации CCl₄. С целью проверки этого обстоятельства нами был выполнен расчет зависимостей выходной мощности лазерного излучения от к для разных начальных парциальных давлений CCl₄ (см. рис. 4, кривые 2, 3). По виду расчетных кривых, приведенных на рисунке, можно сделать предположение, что данная экспериментальная зависимость могла быть получена в результате некоторой неточности (до двух раз) определения начального давления CCl₄ в различных опытах. Кроме того, соответствующую эксперименту кривую можно получить в результате расчета путем плавного увеличения коэффициента паразитного поглощения рабочего излучения активной средой и зеркалами в диапазоне от $\kappa^- = 1 \cdot 10^{-5}$ см $^{-1}$ до $\kappa^- \approx 5 \cdot 10^{-4}$ см $^{-1}$ с ростом пропускания зеркал резонатора. Не исключено, что в эксперименте имело место влияние обоих указанных факторов.

Рассчитаны зависимости выходной мощности излучения и кпд AC от плотности потока нейтронов F_t (мощности накачки) в условиях эксперимента [1]. В расчете для линии 1,59 мкм наблюдались сужение импульса генерации с ростом мощности накачки и рост пикового значения мощности генерации. Это обусловливает наличие оптимального значения кпд $\eta = 0.06\%$ при $F_t \approx 5.10^{15}$ н/(см²·с).

Таким образом, нами построена подробная нестационарная кинетическая модель лазера с ядерной накачкой на атомарных переходах атома хлора ($\lambda = 1,59$ и 2,45 мкм) в смеси He–Ne–CCl₄.

На основе численного моделирования установлено, что основные механизмы накачки верхних рабочих уровней зависят от начальной концентрации лазерноактивной компоненты (CCl₄) и мощности накачки. В оптимальных условиях генерации ($p_{\text{CCl}_A} \approx 30 \text{ мТорр}$) основным механизмом накачки является диссоциативная рекомбинация молекулярных ионов хлора, образующихся в результате сложной цепи плазмохимических реакций. При малых концентрациях четыреххлористого углерода (менее 7 мТорр) накачка верхнего рабочего уровня осуществляется в процессах тройной рекомбинации атомарных ионов хлора, а при больших (свыше 100 мТорр) – преимущественно за счет диссоциативной рекомбинации молекулярных ионов CCl_2^+ . При малых (вблизи порога) мощностях накачки на передний план выходит ион-ионная рекомбинация молекулярных ионов $\mathrm{CCl}_2^{\scriptscriptstyle op}$ с отрицательными ионами хлора. При этом во всех случаях очистка нижних рабочих уровней – радиационная и столкновительная с участием атомов буферного газа.

Оптимальные расчетные характеристики генерации на длине волны 1,59 мкм — мощность Q = 160 Вт и кпд АС $\eta = 0,12\%$ — в смеси He–Ne–CCl₄ при суммарном давлении смеси 2 атм достигаются при следующих условиях: соотношение He:Ne:CCl₄ = 25000:25000:1, коэффициент пропускания зеркал резонатора T = 12%. Минимальная пороговая плотность потока нейтронов $F_t \cong 2 \cdot 10^{13}$ н/(см²·с).

- 1. *Мельников С.П., Порхаев В.В.* // Квантовая электроника. 1995. T. 22. N. 9. C. 891-894.
- 2. Жидков А.Г., Протопопов С.В., Середа О.В. и др. // Труды ИОФАН. М.: Наука, 1989. Т. 21. С. 116–138.
- 3. Вайнштейн А.А., Собельман И.И., Юков Е.А Сечения возбуждения атомов и ионов электронами. М.: Наука, 1973. 144 с.
- 4. *Карелин А.В., Яковленко С.И.* // Квантовая электроника. 1995. T. 22. N 8. C. 769–775.
- 5. Spanel P. et al. // J. Phys. B. 1995. V. 28. P. 2941–2957.
- 6. Rogoff L.G., Kramer J.M., Piejak R.B. // IEEE Trans. on Plasma Science. 1986. V. 14. P. 103–111.
- 7. *Будник А.П., Добровольская И.В.* // Квантовая электроника. 1997. Т. 24. N.6.
- 8. Карелин А.В., Середа О.В., Харитонов В.В. и др. // Атомная энергия. 1986. Т. 61. N 1. C. 44–46.

A.V. Karelin, O.V. Simakova. Kinetic Model of Nuclear-pumped IR-laser in He-Ne-CCl₄ Mixture.

Detailed non-stationary kinetic model and results of numerical simulation of a nuclear-pumped laser in He–Ne–CCl₄ (λ = 1.59, 2.45 μ m) are submitted. Based on the comparison of the calculated results with the experimental ones, the inversion mechanism at laser transitions 1.59 and 2.45 μ m is suggested. Optimum conditions of the generation are determined.