В.В. Белов, С.В. Афонин, И.Ю. Макушкина

ПЕРЕНОС ИК-ИЗОБРАЖЕНИЙ ЧЕРЕЗ АТМОСФЕРУ

В статье обсуждены результаты исследований закономерностей формирования уходящего теплового излучения в спектральных областях 3–5 и 10–13 мкм в системе «атмосфера – подстилающая поверхность», выполненных авторами в рамках теории линейных систем. В дополнение к ранее опубликованным результатам предлагается более подробный анализ вклада процесса рассеяния в формирование восходящих тепловых потоков, его влияния на импульсные реакции атмосферно-оптических каналов формирования и переноса ИКизображений. Особое внимание уделено наклонным схемам аэрокосмического наблюдения земной поверхности в условиях аэрозольной замутненности тропосферных и стратосферных слоев безоблачной молекулярногазовой атмосферы. В качестве приложений рассмотрены результаты численных экспериментов, имитирующих спутниковые наблюдения двух типов температурно-неоднородной подстилающей поверхности.

1. Введение

Влияние атмосферы на характеристики изображений земной поверхности является основным фактором, существенно ограничивающим или исключающим возможность эффективного использования аэрокосмической информации в разнообразных практических приложениях, в том числе в геоинформационных системах. Это влияние может проявляться различным образом в изображении: от изменения спектрального портрета наблюдаемого участка поверхности, искажения контрастной, пространственной структуры и размеров объектов до полной или частичной замены изображения земного объекта наблюдения на атмосферный (в случае облачности, тумана или аэрозоля) [1, 2]. Тематическая обработка такой аэрокосмической информации приводит к значительным ошибкам в оценке количественных характеристик объектов наблюдения (температура, цветовой параметр или индекс вегетации, размеры очага пожара или разлива нефти и т.д.).

Одна из тенденций применения и развития оптико-электронных комплексов аэрокосмического наблюдения земной поверхности в сети геоинформационных систем связана с повышением их пространственной, спектральной, контрастной чувствительности [3]. С одной стороны, это дает возможность более точно оценить количественные характеристики или параметры наблюдаемых процессов или объектов по этим изображениям, с другой стороны, это требует все более подробных и полных знаний как об оптических характеристиках атмосферы в момент съемки, так и о механизмах формирования изображений поля радиояркостей, наблюдаемых через многокомпонентные, нестационарные, в общем случае стохастические, рассеивающие и поглощающие среды.

Так, например, если влияние атмосферы на аэрокосмические изображения низкого пространственного разрешения может быть достаточно корректно учтено через ее интегральные оптические характеристики (такие, как оптическая толщина, коэффициент пропускания и т.п.), то этих знаний для тех же целей, но при обработке изображений высокого пространственного разрешения, уже недостаточно и необходима дополнительно информация о тонкой пространственной структуре оптических свойств атмосферы. Более того, чем с большей точностью (пространственной, временной, спектральной и т.д.) требуется восстановить характеристики наблюдаемых через атмосферу объектов, тем более подробная информация об оптическом ее состоянии должна быть учтена при интерпретации таких изображений. На это, в частности, обращалось внимание на Совещании по вопросам развития и применения геоинформационных технологий (Новосибирск, СО РАН, 19 марта 1996 г.) и на III Межреспубликанском симпозиуме «Оптика атмосферы и океана» (Томск, 2-5 июля 1996 г.). Эти вопросы обсуждались и на Международной конференции «Перенос изображений через атмосферу» (7-9 августа 1996 г., Денвер, США, SPIE). Решение именно этих проблем является основной целью про-449 Перенос ИК-изображений через атмосферу

граммы фундаментальных исследований Института оптики атмосферы по теории формирования и переноса изображений в рассеивающих средах.

В данной статье обобщены результаты исследований закономерностей формирования уходящего теплового излучения в спектральных областях 3–5 и 10–13 мкм в системе «атмосфера – подстилающая поверхность», выполненных авторами ранее и подробно представленных в [4–9].

Исследования проведены в рамках теории линейных систем. В дополнение к работам [4–9] предлагается более подробный анализ вклада процесса рассеяния в формирование восходящих тепловых потоков, его влияния на импульсные реакции атмосферно-оптических каналов формирования и переноса ИК-изображений. Особое внимание уделено наклонным схемам аэрокосмического наблюдения земной поверхности в условиях аэрозольной замутненности тропосферных и стратосферных слоев безоблачной молекулярно-газовой атмосферы. Установлена связь между характеристиками вторичного максимума в импульсных реакциях и оптико-геометрическими параметрами наклонных схем наблюдения.

Рис. 1. Геометрическая схема моделирования

2. Постановка задачи

Пусть в точке *S* (рис. 1), удаленной на расстояние H_0 от сферической земной поверхности радиуса R_3 , расположен оптический приемник, ориентированный на точку *M* в направлении **w**₀. Требуется исследовать зависимость регистрируемой приемником интенсивности *J* оптического излучения от геометрических параметров схемы наблюдения (например, от углов φ , Θ , расстояния H_0 и т.д.) и оптических свойств многокомпонентной неоднородной безоблачной атмосферы и неоднородно отражающей (излучающей) земной поверхности в ИК-диапазоне длин волн $\lambda = 3,75$ и 10,8 мкм. Для корректного решения этой задачи требуется учесть все физические процессы, участвующие в формировании восходящих световых потоков в направлении на приемник излучения от системы «атмосфера–подстилающая поверхность»:

 – рассеяние (включая многократное) и поглощение света на аэрозольных и молекулярногазовых составляющих атмосферы;

- светимость атмосферы;

- излучение длинноволновой радиации земной поверхностью.

Связь между интенсивностью J и оптико-геометрическими параметрами схемы наблюдения и оптическими характеристиками земной поверхности и атмосферы можно установить на основе решения стационарного уравнения переноса излучения:

$$(\mathbf{w}, \operatorname{grad} J(\mathbf{r}, \mathbf{w})) = -\beta_{ext}(\lambda, \mathbf{r}) J(\mathbf{r}, \mathbf{w}) + \beta_{sc}(\lambda, \mathbf{r}) \int_{\Omega} J(\mathbf{r}, \mathbf{w}') g(\lambda, \mathbf{r}, \mathbf{w}, \mathbf{w}') d\mathbf{w}' + \Phi_0(\mathbf{r}, \mathbf{w}),$$
(1)

где $J(\mathbf{r}, \mathbf{w})$ – интенсивность в точке **r** в направлении **w**; λ – длина волны оптического излучения; β_{ext} , $\beta_{sc}(\lambda, \mathbf{r})$, $g(\lambda, \mathbf{r}, \mathbf{w}, \mathbf{w}')$ – оптические характеристики среды; $\Phi_0(\mathbf{r}, \mathbf{w})$ – внутренние источники излучения (например, тепловое излучение атмосферы). Запишем для уравнения (1) граничные условия:

$$\begin{cases} J(\mathbf{r}, \mathbf{w}) = S(\mathbf{r}, \mathbf{w}) \,\,\delta(\mathbf{r} - \mathbf{r}_0), \, \mathbf{r} \in \Gamma_1(\mathbf{r}) \,, \, (\mathbf{n}_1, \mathbf{w}) < 0, \\ J(\mathbf{r}, \mathbf{w}) = 0, \, \mathbf{r} \in \Gamma_2(\mathbf{r}) \,, \, (\mathbf{n}_2, \mathbf{w}) < 0, \end{cases}$$
(2)

где $S(\mathbf{r}, \mathbf{w})$ – пространственно-угловое распределение излучательной способности; \mathbf{n}_1 , \mathbf{n}_2 – внутренние нормали к поверхностям $\Gamma_{1,2}(\mathbf{r})$, ограничивающим атмосферу сверху и снизу.

Решением уравнения (1) при граничных условиях (2) является функция размытия точки (ФРТ), или импульсная реакция канала формирования и переноса изображения. Связь между фундаментальным решением уравнения (1) – функцией Грина – и функциями размытия точки рассмотрена в [10]. С помощью ФРТ, используя принцип суперпозиции, при определенных условиях (изопланарность изображений, однородность земной поверхности и др.) можно записать решение уравнения (1) для любого конкретного распределения отражательной (излучательной) способности, заданной на земной поверхности. Таким образом, целью исследований становится зависимость импульсной реакции от вариантных параметров задачи. В рассматриваемом случае к ним относятся: состав атмосферы, распределение в пространстве оптических характеристик среды, излучательные свойства атмосферы и земной поверхности.

Для анализа влияния отдельных физических процессов на регистрируемое приемным устройством собственное излучение системы «атмосфера – подстилающая поверхность» осуществлялся расчет интенсивности J_{λ} и радиационной температуры T_{λ} :

$$J_{\lambda} = J_{\lambda}^{0} + J_{\lambda}^{MS}, \quad T_{\lambda} = B_{\lambda}^{-1} [J_{\lambda}]; \quad J_{\lambda}^{0} = J_{ATM}^{0} + J_{SURF}^{0}, \quad J_{1}^{MS} = J_{ATM}^{MS} + J_{SURF}^{MS};$$

$$J_{SURF}^{0} = B_{\lambda} [T_{S}(x_{0}, y_{0})] \exp (-\tau); \quad J_{SURF}^{MS}(x_{0}, y_{0}) = \iint_{S} h_{\lambda}(x - x_{0}; y - y_{0}) B_{\lambda} [T_{S}(x, y)] dx dy$$

Здесь J_{ATM}^0 , J_{SURF}^0 , J_1^{MS} , J_{SURF}^{MS} – вклады атмосферы и подстилающей поверхности в интенсивность нерассеянного (J_1^0) и рассеянного (J_1^{MS}) излучения; τ – оптическая толщина атмосферы; B_{λ} – функция Планка; B_1^{-1} – обратная функция Планка; T_S – температура подстилающей поверхности; $h(x - x_0; y - y_0)$ – функция размытия точки; ($x_0; y_0$) – координаты точки наблюдения; S – эффективная пространственная область формирования бокового подсвета. В наших расчетах S ограничивалась окружностью с центром в точке ($x_0; y_0$) и радиусом R. Величина R составляла 300 км.

Решение уравнения (1) при граничных условиях (2) получено методом Монте-Карло, что позволило асимптотически точно и с контролируемой точностью учесть все физические процессы, участвующие в формировании и переносе изображения земной поверхности через атмосферу.

При расчетах был использован алгоритм локальной оценки на сопряженных траекториях [11]:

$$h(x, x_0; y, y_0) = \frac{1}{M} \sum_{k=1}^{M} \xi_k$$
, $\xi_k = \sum_{n=0}^{N_k} \Psi(X_n)$,

при этом сама локальная оценка $\Psi(X_n)$ имела вид

$$\Psi(X_n) = \Lambda_n g_{nj} \exp\{-\tau_{nj}\} \ \mu_{nj}/2\pi^2 r_{nj}^2.$$

Здесь M – количество случайных траекторий; N_k – количество столкновений на k-й траектории; $X_n = (x_n, y_n, z_n; \mathbf{w}_n)$ – координаты и направление прихода фотона в точку n-го столкновения на очередной случайной траектории; $\Lambda_n = \prod_{i=1}^n \omega_0(X_i)$, $\omega_0(X_i)$ – альбедо однократного рассеяния в точке X_i ; $g_{nj} = g\{\gamma(X_n, X_j)\}$ – индикатриса рассеяния в точке X_n , $X_j = (x_j, y_j)$ – точка на поверхности Земли, $\gamma(X_n, X_j)$ – косинус угла между \mathbf{w}_n и направлением на точку X_j ; $\tau_{nj} = \tau(X_n, X_j)$ – оптическая длина пути от точки X_j до точки X_n ; $\mu_{nj} = \mu(X_n, X_j)$ – косинус угла между нормалью к поверхности в точке X_j и направлением на точку X_n ; $r_{nj} = r(X_n, X_j)$ – расстояние от X_j до X_n .

Для удобства анализа пространственной симметрии импульсных реакций рассчитывалась «интегральная» ФРТ: $h_{\lambda}^{*}(\varphi) = \int_{0}^{R} h_{\lambda}(r,\varphi) r dr$. Здесь $h_{\lambda}(r,\varphi) - \varphi$ ункция $h(x - x_0, y - y_0)$ в поляр-

Перенос ИК-изображений через атмосферу

ных координатах (r, φ) , где r – расстояние по поверхности Земли от (x_0, y_0) до произвольной точки (x, y); φ – азимутальный угол и tg $\varphi = (x - x_0)/(y - y_0)$ (см. рис. 1).

Исследования проведены для следующих моделей оптических свойств атмосферы и земной поверхности и оптико-геометрических параметров схемы наблюдения:

спектральные каналы – $\lambda = 3,75$ и 10,8 мкм;

зенитные углы трассы (от горизонта) – $\Theta = 30-90^{\circ}$;

атмосфера – безоблачная, молекулярно-аэрозольная, сферически-симметричная, вертикально-стратифицированная, горизонтально-однородная;

верхняя граница – на высоте 100 км;

метеомодель атмосферы – лето и зима средних широт;

аэрозольные модели (две ситуации):

– континентальный (*rural*) или городской (*urban*) типы аэрозоля в приземном слое атмосферы 0–2 км (дальность видимости $S_{M} = 1-50$ км) и фоновое содержание аэрозоля в тропосфере и стратосфере;

прозрачная атмосфера в приземном слое и различные модели стратосферных аэрозольных слоев, которые имеют максимальные характеристики ослабления на высотах 14–20 км;

модель подстилающей поверхности – ламбертовская, излучающая по закону черного тела с температурой *T_s* = 294,2 и 272,2 К для лета и зимы соответственно.

Вертикальные профили метеопараметров атмосферы, коэффициенты молекулярного и аэрозольного ослабления (рассеяния) были получены на основе данных, скомпилированных в программном комплексе LOWTRAN-7 [12].

3. Результаты моделирования

3.1. Вклад рассеяния в формирование восходящего теплового потока

Влияние рассеивающих свойств атмосферного аэрозоля на интенсивность восходящего ИК-излучения в случае однородной подстилающей поверхности иллюстрируется рис. 2–4, анализ которых позволяет сделать следующие выводы.

Рассеяние аэрозолем может играть заметную роль в формировании восходящих потоков теплового излучения в условиях замутненной атмосферы. Его относительный вклад $R_{SCT} = J_{\lambda}^{MS} / J_{\lambda}$ в интенсивность уходящей тепловой радиации монотонно возрастает с увеличением τ_{aer} (см. рис. 2) и в случае приземного аэрозоля может достигать 15-40% (λ = 3,75 мкм) и 10-25% $(\lambda = 10,8 \text{ мкм})$. В случае вулканического аэрозоля величина R_{SCT} заметно уменьшается и не превышает 6-18%. Необходимо отметить существование заметных сезонных различий величины относительного вклада рассеянного излучения для приземного аэрозоля. Превышение «зимних» значений R_{SCT} над «летними» может составлять порядка 5-10%. Кроме этого обращает на себя внимание хорошее совпадение «зимних» кривых $R_{SCT}(\tau_{aer})$ для $\Theta = 45$ и 90°. Таким образом, можно предположить, что для этих ситуаций значение R_{SCT} определяется только величиной аэрозольной оптической толщины вдоль трассы наблюдения. Сравнивая расчетные данные для континентального и городского аэрозолей (см. рис. 2), следует отметить их заметное различие (до 5-15%), которое объясняется существенной разницей в альбедо однократного рассеяния для этих типов аэрозолей. В случае вулканического аэрозоля при фиксированных значениях τ_{qer} разброс R_{SCT} для различных метеомоделей атмосферы и углов наблюдения составляет менее 0,5%, т.е. величина относительного вклада рассеянного излучения определяется только значениями аэрозольной оптической толщины (см. рис. 2).

Анализ данных рис. З позволяет констатировать доминирующую роль подстилающей поверхности в формировании рассеянного излучения независимо от условий наблюдения. Величина $R_{SRF} = J_{SURF}^{MS}/J_{\lambda}^{MS}$ при повышенной концентрации аэрозоля в приземном слое и прозрачной стратосфере возрастает с ростом прозрачности атмосферы в целом и лежит в диапазонах 50–85% (лето средних широт) и 60–95% (зима средних широт). При появлении вулканического аэрозоля в стратосфере эта величина также превышает 50% и лежит в диапазонах 75–90% ($\lambda = 3,75$ мкм) и 50–80% ($\lambda = 10,8$ мкм). Однако в отличие от случая приземного аэрозоля здесь она слабо зависит от τ_{aer} .

Рис. 2. Зависимость величины R_{SCT} от аэрозольной оптической толщины и диапазоны ее изменчивости для различных типов аэрозоля (К – континентальный, Г – городской, С – стратосферный)

Рис. 3. Зависимость величины *R_{SRF}* от аэрозольной оптической толщины для различных типов аэрозоля Перенос ИК-изображений через атмосферу

Рис. 4. Зависимость величины R_{MLT} от аэрозольной оптической толщины для различных типов аэрозоля

Практический интерес могут представлять результаты оценок вклада в J_{λ}^{MS} многократно рассеянного излучения, когда количество актов столкновения фотонов с аэрозольными частицами n > 1. Интенсивность рассеянного излучения запишем в виде $J_{\lambda}^{MS} = J_{\lambda}^{MS}(n = 1) + J_{\lambda}^{MS}(n > 1)$. Данные о величине $R_{MLT} = J_{\lambda}^{MS} (n > 1) / J_{\lambda}^{MS}$ представлены на рис. 4. Сравнивая рис. 2 и 4, можно отметить качественное совпадение зависимостей R_{MLT} и R_{SCT} от оптикогеометрических параметров канала формирования и распространения изображения. Из данных рис. 4 следует, что преобладающий вклад в J_{λ}^{MS} вносит однократно рассеянное излучение. Однако при повышенной концентрации аэрозоля в приземном слое атмосферы величина R_{MLT} может достигать 15–35% для λ = 3,75 мкм и 10–20% для λ = 10,8 мкм. Для указанных двух спектральных каналов эти значения эквивалентны изменению радиационной температуры δT_{λ} на 0,6–3,0 и 0,7–2,5 К. При повышении концентрации вулканического аэрозоля в стратосфере и прозрачной тропосфере эта величина не превышает 5-15% и соответствует $\delta T_{\lambda} < 0.5-0.6$ К. Обратимся к вкладу в J_{λ}^{MS} многократно рассеянного излучения атмосферы. Для приземного аэрозоля он достигает заметного уровня ($\delta T_{\lambda} > 0,5$ K) только для малых зенитных углов при дальности видимости S_M < 2 км. Данное обстоятельство позволяет при моделировании рассеянного аэрозолем атмосферного излучения в целях решения ряда практических задач ограничиться учетом однократного рассеяния.

3.2. Моделирование импульсной реакции

Проанализируем пространственные свойства функции размытия точки.

3.2.1. Приземный аэрозоль

Общий вид пространственного распределения ФРТ приведен на рис. 5. В рассмотренном диапазоне расстояний r < 20 км функция h(r) монотонно и быстро убывает с ростом r. Рис. 5 также иллюстрирует вполне очевидный факт, что в случае надирного ($\Theta = 90^{\circ}$) наблюдения функция размытия обладает круговой симметрией. При наблюдении на наклонных трассах осевая симметрия ФРТ нарушается: при сохранении симметрии относительно плоскости *YOZ* график функции $h_{\lambda}(x, y)$ вытягивается вдоль оси *OY* в сторону отрицательных значений (к наблюдателю). Степень асимметрии $h_{\lambda}(x, y)$ наглядно иллюстрируется приведенными на рис. 6 данными об «интегральной» ФРТ $h^*(\phi)$ для случая $\Theta = 45^{\circ}$. Их анализ позволяет выделить следующие характерные особенности поведения этой функции: а) наличие минимума при значениях азимута $\phi \approx 60-75^{\circ}$; б) ее значительное (в несколько раз) увеличение при росте значений ϕ . Таким обра-454

зом, характер асимметрии ФРТ наряду с общей вытянутостью имеет дополнительные особенности, а ее степень может достигать значительной величины.

Анализ зависимости функции размытия от оптической толщины позволяет отметить монотонный рост значений ФРТ с увеличением τ_{aer} . При этом наблюдается хорошее совпадение угловой зависимости $h^*(\varphi)$ для различных значений альбедо однократного рассеяния и оптической толщины аэрозоля и выполняется следующее соотношение:

$$\frac{h(x - x_0, y - y_0; \tau_1)}{h(x - x_0, y - y_0; \tau_2)} \approx \text{const} \; .$$

Это свойство ФРТ означает фактически сохранение ее пространственной формы при изменении τ_{aer} и оптических характеристик аэрозольного рассеяния в рассмотренных пределах.

Рис. 5. Пространственное распределение (форма) функции размытия точки в плоскости YOZ для различных типов аэрозоля

Перенос ИК-изображений через атмосферу

Рис. 6. Зависимость «интегральной» функции размытия точки от азимутального угла для различных типов аэрозоля

Ширина функции размытия точки для интегрального уровня 95% и погрешности расчета радиационной температуры $\delta T_{\lambda} = 0,5$ К иллюстрируется данными рис. 7.

3.2.2. Поствулканический аэрозоль

Для исследования особенностей импульсной реакции ИК-каналов при наличии рассеивающего слоя в стратосфере была рассмотрена аэрозольная модель слоя, локализованного в стратосфере. Результаты моделирования пространственного распределения ФРТ для стратосферного аэрозоля приведены на рис. 5. Анализ этих данных позволяет в целом говорить об аналогичной (со случаем приземного аэрозоля) зависимости функции размытия от τ_{aer} , в частности о сохранении формы h(x, y) при изменении оптической толщины.

Так же как и для приземного аэрозоля, здесь имеет место нарушение осевой симметрии Φ PT для наклонных трасс наблюдения. Однако характер асимметрии имеет в этом случае отличительную особенность. При y < 0 наблюдается нарушение монотонности зависимости h(r) и происходит формирование четко выраженного локального максимума этой функции в плоскости *YOZ*, а его удаление от точки наблюдения зависит от угла наблюдения и высоты расположения рассеивающего слоя:

$$r_{\max} \sim z_{aer} \operatorname{ctg} \Theta$$
,

где *z_{aer}* – высота центра рассеивающего слоя над земной поверхностью. Эту оценку положения максимума несложно получить из выражения для интенсивности бокового подсвета в приближении однократного рассеяния при наклонном наблюдении ламбертовой однородной поверхности через рассеивающий слой.

Обратим внимание на инвариантность формы ФРТ к изменению τ_{aer} . Для каждого значения Θ достаточно определить «масштабирующий» коэффициент $k \sim \tau_{aer}/\tau_0$, позволяющий по табулированным данным $h(\tau_0, x, y)$ вычислить функцию размытия $h(\tau_{aer}, x, y)$ для требуемого значения τ_{aer} , не проводя дополнительного моделирования ее пространственной формы. Таким образом, можно получить заметное снижение вычислительных затрат при многократном моделировании импульсной реакции каналов распространения ИК-излучения в условиях пространственно-временной изменчивости оптических свойств аэрозоля.

4. Приложения

В численных экспериментах имитировались спутниковые наблюдения температурнонеоднородной земной поверхности с помощью ИК-каналов радиометра AVHRR:

спектральные каналы – $\lambda = 3,75$ и 10,8 мкм;

высота наблюдения – $H_0 = 800$ км;

углы наблюдения $\Theta = 0$ и 45°;

площадь элемента пространственного разрешения прибора – $S_0 \approx 1.0 \text{ кm}^2$ при $\Theta = 0^\circ$ и $S_0 \approx 4.0 \text{ кm}^2$ при $\Theta = 45^\circ$.

4.1. Крупномасштабные градиенты

Модель неоднородной подстилающей поверхности задавалась следующим образом. Пусть через область формирования бокового подсвета проходит линия, разделяющая эту область на два однородных ламбертовских излучающих по закону черного тела участка с температурами T_S (площадь S_1) и $T' = T_S + dT_S$ (площадь S_2), при этом точка наблюдения (x_0, y_0) находится в области S_1 . Температура точки наблюдения – $T_S = 294,2$ К. Величина температурного градиента dT_S изменяется в интервале от –20 до + 20 К.

Данная модель характеризуется двумя геометрическими параметрами:

– расстоянием d между линией раздела и точкой (x_0, y_0) ;

– азимутальным углом β между проекцией оптической оси приемника на подстилающую поверхность и линией раздела или углом $\phi = 90^\circ - \beta$, который соответствует азимутальному углу ϕ для функции размытия точки.

Результаты исследований представлены в виде зависимости температурных поправок

$$\delta T_{\lambda} = T_{\lambda \mid_{dT_s=0}} - T_{\lambda \mid_{dT_s\neq 0}}$$

от параметров температурных неоднородностей d и dT_S для различных оптикогеометрических условий наблюдения.

Величина температурных поправок в канале $\lambda = 10,8$ мкм при максимальных значениях τ_{aer} и dT_S не превышает 0,5°. Искажающим влиянием бокового подсвета при атмосферной коррекции данных дистанционных измерений в этом канале можно пренебречь, поэтому ниже приводим результаты моделирования только для канала $\lambda = 3,75$ мкм.

На рис. 8 представлена зависимость температурных поправок $\delta T_{\lambda}(d)$ для различных углов Θ и φ . Анализируя эти данные, необходимо обратить особое внимание на следующее обстоятельство. Наличие заметной асимметрии функции размытия в случае наклонных трасс наблюдения приводит к «азимутальной» зависимости температурных поправок от угла φ . Так, их значения для $\varphi = 0$ и 180° могут различаться более чем на 1° (рис. 9). Ширина полосы, в которой при максимальных значениях τ_{aer} и $dT_s = 20^\circ$ эта разница составляет более 0,5°, достигает 0,5 км для приземного и 15 км для поствулканического аэрозоля.

Рис. 8. Температурные поправки в зависимости от расстояния для различных азимутальных углов

Рис. 9. Ширина полосы (d_{max}) в зависимости от азимутального угла для различных типов аэрозоля

Наряду с этим практический интерес могут представлять результаты оценки величины d_{\max} , которая удовлетворяет условию $\delta T_{\lambda}(d) < 0.5^{\circ}$ при $d > d_{\max}$. Эти данные приведены на рис. 9.

Процесс аэрозольного рассеяния приводит к «размытию» линии градиента на изображениях температурных неоднородностей, т.е. по обе стороны от линии раздела образуется полоса, в пределах которой результаты дистанционных измерений могут заметно отличаться в зависимости от положения точки наблюдения и ориентации оптической оси прибора. Ширина этой полосы определяется степенью замутненности атмосферы, величиной температурного градиента и может достигать (в зависимости от высоты локализации рассеивающего слоя) значений порядка 1–20 км. Этот вывод необходимо принимать во внимание при атмосферной коррекции результатов дистанционных температурных измерений высокого и среднего пространственного разрешения, полученных, например, в прибрежной полосе.

4.2. Высокотемпературные аномалии

Модель подстилающей поверхности задавалась следующим образом. Пусть на поверхности задан элемент площадью S_0 . В центре его расположен высокотемпературный участок поверхности площадью $S_H < S_0$ и с температурой T_H .

Величина $S_H = L_H \times L_H$ (L_H – линейный размер высокотемпературной неоднородности, например очага пожара) изменяется в пределах от 10×10 до 1000×1000 м².

Пусть температура пожара $T_H = 600$ и 1000 К, что соответствует процессам тления и горения. Температура окружающей поверхности $T_S = 294,2$ К.

Рис. 10. Зависимость величины k_{aer} от аэрозольной оптической толщины: — • континентльный; — • континентальный + молекулярное ослабление; — Δ городской; — Δ городской + молекулярное ослабление

При расчетах производилось усреднение интенсивности теплового излучения (яркостная температура) по площади S_0 :

$$\overline{J}_1 = J_{ATM} + \frac{1}{S_0} \iint_{S_0} J_{SURF}(x, y) \, dx \, dy \,, \quad \overline{T}_{\lambda} = B_{\lambda}^{-1} \left[\overline{J}_{\lambda} \right] \,.$$

Сформулируем основные результаты исследований (рис. 10).

а) Анализ полученных значений k_{aer} (погрешность оценки линейных размеров) указывает на возможность заметных ошибок, приводящих к недооценке по спутниковым данным величины L_H на 20–60% (площади S_H – в 1,5–2,5 раза), если в условиях высокой замутненности атмосферы не учитывать искажающее влияние аэрозоля в приземном слое.

Перенос ИК-изображений через атмосферу

б) Стратосферный аэрозольный слой оказывает значительно меньшее (по сравнению с приземным) искажающее влияние на измеряемую радиационную температуру при наличии мелкомасштабных высокотемпературных аномалий. Так, даже в случае экстремального (из рассмотренных вариантов) содержания аэрозоля в стратосфере ошибка дистанционной оценки линейных размеров очагов пожара не превышает 15%, а его площади – 30%.

в) Степень искажения размеров высокотемпературного очага определяется главным образом оптической толщиной аэрозольного ослабления, т.е. доля рассеянного излучения $R_{SCT} = J_{\lambda}^{MS}/J_{\lambda}$ пренебрежимо мала.

Итак, в условиях высокой замутненности приземного слоя атмосферы искажающее влияние аэрозоля может являться серьезной помехой для надежного решения задачи обнаружения мелкомасштабных высокотемпературных аномалий (очагов пожаров) и определения их температуры и размера на основе аэрокосмических ИК-данных среднего пространственного разрешения.

- 1. Кондратьев К.Я., Смоктий О.И., Козодеров В.В. Влияние атмосферы на исследование природных ресурсов из космоса. М.: Машиностроение. 1985. 272 с.
- 2. Белов В.В. // Оптика атмосферы. 1989. Т. 2. № 8. С. 787-799.

3. Жуков Б.С. // Космический бюллетень. 1995. Т. 2. № 2. С. 5-8.

4. Афонин С.В., Белов В.В., Макушкина И.Ю. // Оптика атмосферы и океана. 1994. Т. 7. N 6. С. 797–809. 5. Афонин С.В., Белов В.В., Макушкина И.Ю. // Оптика атмосферы и океана. 1994. Т. 7. N 6. С. 810–817. 6. Афонин С.В., Белов В.В., Макушкина И.Ю. // Оптика атмосферы и океана. 1994. Т. 7. N 6. С. 818–826.

7. Афонин С.В., Белов В.В., Макушкина И.Ю. // Оптика атмосферы и океана. 1995. Т. 8. N 9. С. 1402–1410.

8. Афонин С.В., Белов В.В., Макушкина И.Ю. // Оптика атмосферы и океана. 1996. Т. 9. N 12. С. 1812–1820.

9. Афонин С.В., Белов В.В., Макушкина И.Ю. // Оптика атмосферы и океана. 1997. Т. 10. N 2. С. 184–190.

10. Белов В.В. // Оптика атмосферы и океана. 1992. Т. 5. № 8. С. 823-828.

11. Белов В.В., Макушкина И.Ю. Теория и приложения статистического моделирования. Новосибирск: ВЦ СО AH CCCP, 1988. C. 153-164.

12. Kneizys F.X., Shettle E.P., Abreu L.W., et al. User's Guide to LOWTRAN-7. AFGL-TR-88-0177. ERP. No. 1010. AFGl, Hansom AFB. MA 01731. August 1988.

Институт оптики атмосферы СО РАН, Томск

Поступила в редакцию 16 января 1997 г.

V.V. Belov, S.V. Afonin, I.Ju. Makushkina. Transfer of IR Images through the Atmosphere.

The regularities of outgoing thermal radiation of 3-5 and 10-13 µm spectral ranges of the «atmosphere-underlying surface» system have been investigated in the framework of linear systems theory. A contribution of the scattering process into the upgoing thermal flows formation and its influence on pulse responses of the atmospheric-optical channels of the IR images formation and transfer have been analyzed more closely. A particular attention is paid to inclained paths of aerospace observations of the Earth surface under aerosol turbidity in tropospheric and stratospheric layers of cloudless atmosphere. As a supplement, the results of numerical experiments are given simulating the observations of temperature-inhomogeneous underlying surface from satellites.