«Оптика атмосферы», 1, № 11 (1988)

Л.С. Ивлев, К.Я. Кондратьев, О.В. Максименко, В.Г. Сирота, А.В. Шишкин

КОРОТКОПЕРИОДИЧЕСКИЕ ВАРИАЦИИ СОДЕРЖАНИЯ ОЗОНА И ИНТЕНСИВНОСТИ СОЛНЕЧНОЙ РАДИАЦИИ В ПРИЗЕМНОМ СЛОЕ АТМОСФЕРЫ

Специально сконструированной актинометрической и озонометрической аппаратурой, а также озонометром «Dasibi» проведены измерения временного хода концентрации озона ([O₃]) и интенсивности приходящей солнечной радиации (ИСР) в приземном и приводном слоях атмосферы. В синхронных рядах [O₃] и ИСР выделены гармоники с периодами $T_1([O_3]) = T(ИСР) \simeq 3,3$ мин и $T_2([O_3]) = T_2(ИСР) \simeq 6,3$ мин. Проанализированы возможные причины обнаруженных короткопериодических вариаций. Выдвинуты предположения о связи колебаний ИСР с колебательными процессами в фотосфере Солнца и фотохимической природе вариаций [O₃].

1. Короткопериодические вариации концентрации озона ([O₃]) и интенсивности солнечной радиации (ИСР) в приземном слое атмосферы привлекают большое внимание в связи с процессами, определяющими динамическое состояние и пространственную структуру концентрации озона, а также с проблемой солнечно-атмосферных связей (см., например, [1, 2]).

Измерения короткопериодических колебаний [O₃] и ИСР требуют малоинерционной, высокочувствительной аппаратуры. В данной работе измерения проводились специально разработанным в ЛГМИ актинометром, а также озонометром «Dasibi» (модель 1003–АН) [3, 4] и актинометрическим комплексом, созданным на основе системы «КСВУ–6» (производство ЛОМО).

2. Принцип действия озонометра «Dasibi» основан на поглощении ультрафиолетового света ($\lambda = 254$ нм) атмосферным озоном. Интенсивность потока света, прошедшего через кювету с атмосферным воздухом, сравнивается с интенсивностью потока света, прошедшего через кювету с воздухом, очищенным от озона с помощью MnO. Основная погрешность прибора 3%, длительность одного измерения 25 с, порог чувствительности прибора 3 ррв (млрд⁻¹), погрешность за счет влияния температуры $\approx 1,7\%$. Озонометр проходил метрологические испытания, которые подтвердили паспортные характеристики прибора. Этот газоанализатор успешно применяется в полевых условиях в различных регионах, в частности, в Антарктиде [4].

Рис. 1. Блок-схема специального актинометра: *1* – прерыватель; *2* – крыльчатка прерывателя; *3* – э/двигатель; *4* – тубус с зачерненными диафрагмами; *5* – подставка; *6* – фотоэлемент; *7* – усилитель; *8* – кабель; *9* – цифровой вольтметр

Измерения $[O_3]$ в приземном слое атмосферы проводились также хемилюминесцентным газоанализатором [5], собранным на базе ракетного озонометра ЦАО [2, 6]. Принцип работы прибора состоит в следующем. Через чувствительный элемент хемилюминесцентного озонометра поочередно пропускается анализируемый воздух, очищенный от озона (нулевой газ), и воздух с известной концентрацией озона, задаваемой встроенным генератором озона (реперный газ). Таким образом, становится возможной периодическая калибровка газоанализатора и проверка нуля его шкалы. Необходимость в калибровке обусловлена тем, что твердотельный хемилюминесцентный чувствительный элемент может терять чувствительность при длительной эксплуатации (примерно на порядок в течение нескольких месяцев [2]). Стабильность работы генератора озона исследовалась в течение нескольких часов с помощью озонометра «Dasibi». Оказалось, что концентрация получаемого озона колебалась в пределах $\pm 5\%$ (при $[O_3] = 10^{13} \text{ см}^{-3}$). Газоанализатор работает в режиме практически непрерывного измерения – общее время вспомогательных операций (проверки нуля шкалы и калибровки) составляет $\simeq 10^{-2}$ времени измерений. В этом существенное отличие данного прибора от твердотельного хемилюминесцентного анализатора фирмы «Филипс» [7], для которого этот показатель равен 3; непрерывность измерений, присущая описанному макету газоанализатора, важна при исследовании короткопериодических вариаций концентрации озона.

Измерения ИСР на уровне подстилающей поверхности проводились специальным актинометром, сконструированным авторами на базе стандартного актинометра AT-50. Конструктивно прибор состоит из светопрерывателя с электродвигателем (частота прерывания 300 Гц), приемника ИСР (например, ФД-20-32К), высокочувствительного, малошумящего усилителя переменного тока (рис. 1). В качестве индикатора использован цифровой вольтметр. Ввиду малых габаритов прибора и низкой потребляемой мощности он с успехом применялся в полевых условиях.

Для высокоточных измерений колебаний ИСР использовался автоматический спектральный комплекс (ACK), созданный на базе серийной установки «КСВУ-6» и предназначенный для измерений в диапазоне длин волн 200—2000 нм с разрешением в УФ-области до 0,05 нм. В состав АСК (рис. 2) входит фотоэлектрическая следящая система (1) для автоматической наводки на Солнце с точностью $\pm 1'$, кварцевый объектив (2), двойной монохроматор на сменных дифракционных решетках МДР-6 (3), набор фотоприемников, рассчитанных на регистрацию световых потоков в различных спектральных диапазонах (4), блок усилителей фототока (5), цифровой вольтметр (6), микро-ЭВМ «Электроника ДЗ-28» (7), интерфейс с периферийными устройствами (8), дисплей (9), принтер «Consul-256» (10), графопостроитель (11) и ряд вспомогательных устройств. Для управления работой АСК создан пакет программ, дающий возможность производить спектральные измерения в различных режимах, а также обрабатывать и хранить полученную информацию. Была произведена проверка стабильности работы АСК в диапазоне 800—1200 нм (с шагом по спектру 5 нм) и при $\lambda = 400$ нм. Анализ полученных данных показывает, что при измерении сигналов, близких по величине к максимальным, изменения чувствительности в течение часа не превышали 0,2%. Короткопериодические изменения чувствительности порядка 10 с не превышали $\pm 0,5\%$.

Рис. 2. Блок-схема автоматического спектрального комплекса. Пояснения в тексте

3. Известны пульсации общего содержания озона (ОСО) с периодом от нескольких минут до нескольких лет. Наиболее надежно установлены 27-суточные и 11-летние колебания, связанные с солнечными циклами [8–12]. Рядом исследователей были обнаружены короткопериодические вариации ОСО с периодами 4,5 мин [13], 4–8, 12–14, 40–50 мин [14], 8, 14, 39, 65 мин [15]. Периоды, полученные авторами [12–15] в разных географических районах различными методами, хорошо согласуются.

При измерениях концентрации приземного озона контактными методами с помощью малоинерционных приборов удается наблюдать сильную кратковременную изменчивость $[O_3]$. Это явление не зависит от орографии местности и проявляется как для континентальных, так и для приморских станций [16]. Считалось, что эта изменчивость имеет случайный флуктуационный характер. Авторами [17, 18] показано, что такие колебания носят квазипериодический характер и вызваны процессами образования и стока озона в приземном слое атмосферы. Ими были получены периоды колебаний в диапазоне 2–15 мин, что хорошо согласуется с периодами колебаний ОСО (см. выше).

В 1983—1984 гг. в Карадагской актинометрической обсерватории (КАО), в августе—сентябре 1985 г., на Полевой экспериментальной базе (ПЭБ) ЦАО и в октябре—ноябре 1985 г. на НИС «Профессор С. Дорофеев» в Северной Атлантике проводились наблюдения за вариациями [O₃] в приземном (приводном) слое атмосферы. Наблюдения вариаций [O₃] в КАО и на ПЭБ ЦАО сопровождались наблюдениями вариаций ИСР. Кроме того, вариации ИСР наблюдались на базе ЛГМИ в пос. Даймище с помощью АСК.

Измерения проводились на высоте $\simeq 1,5$ м от подстилающей поверхности. Каждая серия измерений содержала 100-250 точечных отсчетов ИСР и [O₃], снятых синхронно с интервалом 25 с. Была выполнена проверка условий измерений на воспроизводимость результатов измерений (высота установки прибора, направление и скорость ветра относительно аспирационного отверстия озонометра и т.д.). По этим данным можно утверждать, что условия проведения измерений могут влиять на средний уровень [O₃], изменяя его на несколько процентов, но не влияют на картину временных вариаций [O₃]. Измерения на ПЭБ ЦАО и КАО производились газоанализатором «Dasibi» и специальным актинометром, а на НИС «Профессор С. Дорофеев» — хемилюминесцентным озонометром.

Анализ рядов ИСР и [O₃] проводился с использованием программы гармонического анализа из «Пакета прикладных программ» [19]. Для расчетов использовались ЭВМ М-4030 и ЕС-1022.

В результате анализа рядов ИСР и $[O_3]$ были выделены две гармоники с периодами $T_1 = (3,1\pm0,4)$ мин и $T_2 = (6,2\pm0,4)$ мин (по измерениям в КАО и ПЭБ ЦАО). По измерениям в приводном слое на НИС «Профессор С. Дорофеев» эти гармоники равны $(3,5\pm0,7)$ мин и $(6,3\pm0,7)$ мин. Амплитуды выделенных гармоник $[O_3]$ могут достигать десятков процентов от среднего уровня. Гармоники с периодами короче 3 мин на фоне шумов неразличимы. Пример серии измерений и результатов ее анализа приведен на рис. 3.

Рис. 3. Временной ход концентрации озона 15.08.85 в Рыльске (1) и интерполяция функции $[O_3] = [O_3](t)$ (2). Начало измерений в 11⁰⁰

Измерения колебаний ИСР на длине волны $\lambda \simeq 540$ нм полевым специальным актинометром показали, что амплитуды гармоник ИСР не превышают нескольких процентов от среднего уровня. В то же время погрешность специального актинометра $\leq 2\%$. Поэтому было необходимо повысить достоверность наблюдений пульсаций ИСР, увеличив точность измерений. С этой целью в 1987—1988 гг. в пос. Даймище была проведена серия наблюдений временного хода величины ИСР в диапазоне длин волн 320—330 нм с шагом 0,025 нм с помощью АСК. Были выделены вариации с периодами $T_1 = (3,2\pm0,3)$ мин и $T_2 = (6,3\pm0,3)$ мин и амплитудами (0,5-2,6)% от среднего уровня. Таким образом, можно считать установленным наличие мелкомасштабных колебаний ИСР и $[O_3]$ в приземном (приводном) слое атмосферы, причем $T_1(ИСР) \simeq T_1([O_3])$ и $T_2(ИСР) \simeq T_2([O_3])$.

Возникает вопрос о причинах колебаний ИСР и [О₃] в приземном слое атмосферы.

Возможны два варианта объяснения:

А. Объяснение динамическими процессами в атмосфере (например, [14]). Внутренние гравитационные волны (ВГВ) могут воздействовать на озоносферу за счет вертикального переноса озона и колебаний температуры в области распространения ВГВ. В свою очередь, изменения ОСО под воздействием ВГВ вызывают колебания ИСР на уровне подстилающей поверхности. Анализ показал, что кратковременные колебания температуры не приводят к значительным колебаниям содержания озона в стратосфере из-за слишком большого времени его релаксации на данных высотах и, следовательно, ВГВ не могут объяснить короткопериодические колебания озона [15]. К тому же авторами настоящей работы наблюдалось опережение изменения ИСР на уровне подстилающей поверхности относительно изменения [O₃] ($\Delta t \leq 75$ с). Запаздывание изменений концентрации озона относительно изменения интенсивности излучения Солнца по мере уменьшения высоты (рассматривались [O₃] на высотах 15–45 км и ОСО) получено также в [20] по данным эксперимента «МОНЭКС–79» [21]. Величина этого запаздывания определяется временем фотохимической релаксации на соответствующих высотах [15].

Следовательно, возникновение мелкомасштабных колебаний [O₃] и ИСР на уровне подстилающей поверхности, а также колебаний ОСО нельзя объяснить только динамическими процессами в атмосфере.

Б. Объяснение фотохимическими процессами в нижней тропосфере. Колебания солнечного фотосферного излучения с периодами от минут до часов связаны с такими явлениями в фотосфере Солнца, как грануляция, супергрануляция и вертикальные колебания [22, 23]. Основные «пики мощности» короткопериодических колебаний сосредоточены в «пятиминутной» (2–4,5 мГц (или 3,7– 8,3 мин)) и «трехминутной» (4,5–10 мГц (или 1,7–3,7 мин)) полосах колебаний солнечного излучения [24]. Различными исследователями (напр., [25]) наблюдались колебания солнечной поверхности с периодом более 5 мин (см. таблицу).

Таблица	Периоды колебаний [О ₃] и ИСР в при- земном слое атмосферы, мин	1	I	I	1	Ι	1	1	1	I	$6,2\pm 0,4$	$3,1\pm 0,4$
	Периоды колебаний [O ₃] в приземном слое атмосферы, мин [17, 18]	I	1	I	ļ	61	1	1	I	1	1	2—5
	Периоды колебаний ОСО, мин [15]	39	I	I	1	14	I	I	1	4,8	I	3,9
	Периоды колебаний ОСО, мин [14]	40-50	1	I	1	3	12—14	1	I		48	l
	Периоды колебаний потока ү-квантов в 1974 г., мин [26]	1	33 ± 1	$23,2\pm 0,2$	$15,8\pm 0,2$	$12,7\pm 0,1$	$11,7\pm 0,1$	I	I	I	l	Ī
	Периоды колебаний поверхности Солнца в 1975 г., мин [26]	47,9	30,3	21,0	17,1	14,6	11,8	10,5	8,8	7,9	7,2	I
	Периоды колебаний поверхности Солнца в 1973 г., мин [26]	52	33	23,8	16,7	13,3	11,9	10,4	9,2	7,6	7,0	I

С помощью широкоапертурного гамма-телескопа с искровыми камерами, установленного на высотном аэростате, были обнаружены пульсации потока атмосферных γ -квантов [26] с периодами, приведенными в таблице. Видно практически полное совпадение периодов колебаний потока γ -квантов и колебаний солнечной поверхности [25]. В таблице для сравнения представлены периоды колебаний ОСО [14, 15], [O₃] и ИСР в приземном слое атмосферы. Все приведенные периоды хорошо соответствуют периодам колебания поверхности Солнца и потока γ -квантов. Из этого следует, что природа колебаний атмосферного озона, вероятно, связана с колебательными процессами на Солнце. Это может относиться и к приземному озону, значительная часть которого имеет фотохимическое происхождение [27–29]. Поэтому, очевидно, должно наблюдаться непосредственное влияние колебаний интенсивности солнечного излучения на содержание озона в приземном слое воздуха. На фотохимическую природу колебаний [O₃] в приземном слое указывают также следующие факты: длительности периодов 1-й и 2-й гармоник вариаций ИСР и [O₃] практически полностью совпадают и не зависят от места измерений и времени дня, существует связь рядов [O₃] и ИСР с коэффициентом корреляции \approx 0,74; при кратковременном затемнении диска Солнца плотным кучевым облаком наблюдается уменьшение [O₃] (рис. 4).

Рис. 4. Иллюстрация влияния кратковременного затемнения диска Солнца на временной ход [O₃] (1) и ИСР (2)

Остается не совсем ясным, каким образом колебания ИСР с амплитудой порядка единиц процентов вызывают колебания $[O_3]$ с амплитудами, доходящими до десятков процентов. Возможно, в приземном слое атмосферы действуют какие-то «усилительные» процессы, приводящие к образованию (или разрушению) нескольких молекул $[O_3]$ в расчете на один поглощенный квант. Примером может быть известное увеличение квантового выхода фотолиза озона в присутствии примесных газов (H₂O, CH₄ и др.) [30]. При этом распад озона идет по цепным механизмам и квантовый выход оказывается больше, чем для чистого $[O_3]$.

Авторы выражают благодарность Е.И. Снеткову, принимавшему участие в создании актинометра и В.П. Челибанову, проводившему исследования на НИС «Профессор С. Дорофеев».

2. Перов С.П., Хргиан А.Х. Современные проблемы атмосферного озона. Л.: Гидрометеоиздат. 1980. 268 с.

3. Fehsenfeld F.C., Bollinger M.J., Lin S.C. et al. //J. Atmos. Chem. 1983. V. 1. № 1.

4. Shigeru Ch. //In: Proc. Met. Nat. Inst. Polar Res. 1985. № 39. P. 63.

5. Сирота В.Г., Челибанов В.П. //В кн.: Тезисы докл. научно-техн. конф., «Современные методы и средства автоматизации контроля атмосферы воздуха и перспективы их развития». Киев. 1987. С. 154.

6. Коненков В.А. Автореф. канд. дис., Долгопрудный, 1984. 7. Van Dijk J., De Leeuw P. //In: Proc. 3d Ozone Int. Inst. Congress. Paris. 4-6 May. 1977.

8. Бекорюков В.И. //Вкн.: Тезисы докл. Всес. симпозиума по атмосферному озону. Л.: 1985. С. 46.

- 9. Eckman R.S. //J. Geophys. Res. 1986. D. 91. № 6. P. 6695.
- 10. Eckman R.S. //J. Geophys. Res. 1986. D 91. № 6. P. 6705.

11. Rottman G.J. //Planet. Space Sci. 1983. V. 31. No 9. P. 1001.

12. Mount G.H., Sandress P.W., Schemeltekopf A.L., Solomon S. //J. Geophys. Res. 1987. D 92. № 7. P. 8320.

13. Бритаев А.С., Фарапонова Г.П. //Изв. АН СССР. ФАО. 1976. Т. 12, № 1.

14. Кузнецов Г.И. //В кн.: Рабочее совещание по исследованию атмосферного озона (Тбилиси, 23–27 но-ября 1981 г.). Тбилиси: Мецниераба. 1982. С. 204.

15. Груздев А.Н., Еланский Н.Ф., Трутце Ю.Л. //В кн.: Атмосферный озон. М.: Наука. 1983. С. 18.

^{1.} Кондратьев К.Я. //Экспресс-информация. 1987. № 4. С. 3.

^{16.} Хргиан А.Х. Физика атмосферного озона. Л.: Гидрометеоиздат, 1973. 296 с.

17. Борисов В.В., Ивлев Л.С., Сирота В.Г. //В кн.: Атмосферный озон, Тр. VI Всес. симпозиума. Л.: Гидрометеоиздат. 1987. С. 143. 18. Борисов В.В., Ивлев Л.С., Сирота В.Г. //Изв. АН СССР. ФАО. 1987. Т. 23. № 12. С. 1330. 19. Математическое обеспечение ЕС ЭВМ. Вып. 4 (пакет научных подпрограмм). Минск, 1974. 20. Данилин М.Ю., Кузнецов Г.И. //Изв. АН СССР. ФАО. 1987. Т. 23. № 8. С. 830. 21. Кузнецов Г.И. //Вкн.: Тезисы докл. Всес. симпозиума по атм. озону. Л., 1985. С. 31. 22. Гибсон Э. Спокойное солнце. М.: Мир. 1977. 408 С. 23. Thomas J.H., Lites B.W., Gurman J.B., Ladd E.F. //Astrophys. J. 1987. V. 312. № 1. Pt. 1. P. 457. 24. Hill H.A., Stebbins R.T., Brown T.M. //Preprint. SCLEPA. University of Arisona, Science News. 1975. V. 108. № 5. 25. Гальпер А.М., Кириллов-Угрюмов В.Г. и др. //Письма в ЖЭТФ. 1976. Т. 24. Вып. 7. C. 426. 26. Chameides W.L., Walker J.C. //J. Geophys. Res. 1973. V. 78. № 36. P. 8751. 27. Crutzen P.J. //Pure Appl. Geophys. 1973. № 106-108. P. 1385. 28. Fishman J., Solomon S., Crutzen P.J. //Tellus. 1979. V. 31. P. 432. 29. Окабе Х. Фотохимия малых молекул. М.: Мир. 1981. 500 с. Научно-исследовательский институт Поступила в редакцию физики при ЛГУ, Ленинградский 1 июня 1988 г. гидрометеорологический институт,

L.S. Ivlev, K.Ya. Kondratyev, O.V. Maksimenko, V.G. Sirota, A.V. Shashkin. Short-Term Ozone and Solar Irradiance Variations in Ground Atmospheric Layer.

Институт озероведения АН СССР, Ленинград

A home-made actinometric and ozonometric equipment was used to measure temporal variations of O_3 concentration and solar irradiance near the Earth's and sea surface. The resulting time series indicated two harmonics centered at 3.3 and 6.3 min. The observed short-term ozone and solar irradiance variations can be attributed to the photochemical O_3 origin and the vibrational processes involved in the Sun's photosphere.