ДИСТАНЦИОННОЕ ЗОНДИРОВАНИЕ АТМОСФЕРЫ, ГИДРОСФЕРЫ И ПОДСТИЛАЮЩЕЙ ПОВЕРХНОСТИ

УДК 504.37; 504.38

Определение относительного содержания HDO в атмосфере по данным одновременных измерений спутника GOSAT-2 в тепловом и ближнем ИК-диапазонах

И.В. Задворных^{1 ⊠}, К.Г. Грибанов¹, В.И. Захаров^{1, 2}, R. Imasu³*

¹Институт естественных наук и математики, Уральский федеральный университет 620000, г. Екатеринбург, пр. Ленина, 51

²Институт математики и механики им. Н.Н. Красовского УрО РАН 620990, г. Екатеринбург, ул. Софьи Ковалевской, 16 ³Atmosphere and Ocean Research Institute, The University of Tokyo 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8568, Japan

> Поступила в редакцию 20.07.2021 г.; после доработки 13.09.2022 г.; принята к печати 16.10.2022 г.

Продемонстрировано применение оригинального метода решения обратной задачи гиперспектрального спутникового зондирования атмосферы для определения вертикального профиля отношения HDO/H₂O в атмосфере Земли с одновременным использованием спектров теплового и ближнего ИК-диапазонов. Впервые данным методом восстановлен вертикальный профиль относительного содержания изотополога HDO (δ D) в атмосферном водяном паре по результатам измерений спутникового ИК-спектрометра TANSO-FTS//GOSAT-2 и выполнено сравнение восстановленных значений δ D с данными наземного дистанционного зондирования на станции Карлсруэ (Германия), входящей в международную измерительную сеть TCCON. Показано, что одновременное использование спутниковых спектров уходящего излучения атмосферы в тепловом диапазоне и отраженного солнечного излучения в ближнем ИК-диапазоне дает более высокую корреляцию полученных спутниковых данных по среднемесячным значения δ D с данными наземного зондирования, чем использование одного из этих двух диапазонов.

Ключевые слова: дистанционное зондирование, обратная задача, изотопологи водяного пара, GOSAT-2; remote sensing, inverse problem, water vapor isotopologues, GOSAT-2.

Введение

Атмосферный водяной пар - это парниковый газ, оказывающий ключевое воздействие на глобальную атмосферную циркуляцию и энергетический баланс планеты. Для повышения точности прогнозирования атмосферных процессов и климата необходимы понимание и оценка масштабов процессов гидрологического цикла в атмосфере [1]. Многообещающими для решения таких задач представляются данные об изменении относительного содержания стабильных изотопологов водяного пара, в частности HDO. При одинаковой температуре давление насыщенных паров основного изотополога H₂O и HDO отличаются, поэтому при фазовых превращениях происходит изменение изотопического состава водяного пара. Таким образом, величина HDO/H₂O в осадках и атмосферном водяном паре характеризует «силу» гидрологического цикла и является его своеобразным трассером [2, 3]. Однако малое содержание HDO, быстрые изменения концентрации атмосферного водяного пара во времени, большие горизонтальные и высотные вариации делают его точное определение сложной задачей для любого измерения.

Соотношение HDO/H_2O принято представлять в виде

$$\delta D = \left[\frac{(\text{HDO}/\text{H}_2\text{O})}{R_{\text{std}}} - 1\right] \cdot 1000\%, \quad (1)$$

где $R_{\rm std}$ — отношение HDO/H₂O по стандарту SMOW (Standard Mean Ocean Water), равное 3,115210 · 10⁻⁴ [4].

С 2010-х гг. и по настоящее время осуществляется постоянный мониторинг атмосферного состава сетью ИК-Фурье-спектрометров наземного базирования TCCON (The Total Carbon Column Observing Network) [5]. Наземные станции измеряют солнечный спектр в ближнем ИК-диапазоне для определения среднего содержания парниковых

^{*} Илья Викторович Задворных (ilia.zadvornyh@urfu. ru); Константин Геннадьевич Грибанов (kgribanov@ remotesensing.ru); Вячеслав Иосифович Захаров (v.zakharov @remotesensing.ru); Rioichi Imasu (imasu@aori.u-tokyo.ac.jp).

[©] Задворных И.В., Грибанов К.Г., Захаров В.И., Imasu R., 2022

газов в атмосферном столбе, в том числе HDO. Полученные данные используются для валидации различных методов исследования атмосферного состава.

В дополнение к прямым измерениям δD в приповерхностном слое воздуха и осадках применяют также дистанционные методы наземных и спутниковых измерений [6–8]. Современные технологии спутникового дистанционного зондирования позволяют получать информацию об относительном распределении δD в атмосфере с высоким пространственным разрешением, однако все же немного уступают по точности наземным дистанционным измерениям. Спутниковые измерения δD в атмосфере неоднократно проводились с 2000-х гг. в различных спектральных диапазонах сенсорами типа IMG, TES, SCIAMACHY, IASI, GOSAT [9–12] и др.

Японский спутник второго поколения Greenhouse Gases Observing Satellite (GOSAT-2) [13] был запущен в 2018 г. для продолжения исследований глобального распределения парниковых газов в атмосфере Земли. Расположенный на борту Фурьеспектрометр TANSO-FTS-2 со спектральным разрешением 0,2 см⁻¹ одновременно измеряет в пяти спектральных интервалах: 700–1188, 1188–1800 см⁻¹ теплового ИК и 4200–5200, 5900–6400, 12950– 13250 см⁻¹ ближнего ИК, которые подходят для определения HDO/H₂O.

Цель работы — решение обратной задачи по получению данных о величине HDO/H₂O в атмосфере из спектров TANSO-FTS/GOSAT-2 с использованием предложенного метода.

Материалы и методы

Для определения вертикального профиля δD одновременно из спектров теплового и ближнего ИК-диапазонов TANSO-FTS/GOSAT-2 мы использовали версию ПО FIRE-ARMS (Fine Infrared Explorer for Atmospheric Radiation Measurements) с моделью переноса излучения VLIDORT (Vector LInerilized Discrete Ordinate Radiative Transfer) [14– 16], которая вычисляет модельные спектры (прямая модель) и их производные (якобианы). Взаимосвязь прямой модели *F*, измеренного спектра **y**, вектора состояния атмосферы **x**, а также инструментальных характеристик сенсора можно записать в виде уравнения

$$\begin{bmatrix} \mathbf{y}_T \\ \mathbf{y}_N \end{bmatrix} = \begin{bmatrix} F_T(\mathbf{x}) \\ F_N(\mathbf{x}) \end{bmatrix} + \begin{bmatrix} \mathbf{\epsilon}_T \\ \mathbf{\epsilon}_N \end{bmatrix}, \quad (2)$$

где $F_T(\mathbf{x})$, $F_N(\mathbf{x})$, $\mathbf{\epsilon}_T$, $\mathbf{\epsilon}_N$ — прямые модели и ошибки измерения теплового (*T*) и ближнего (*N*) ИК-диапазонов.

Обратная задача заключается в нахождении такого \mathbf{x} , при котором невязки прямой модели $F(\mathbf{x})$ и измеренного спектра \mathbf{y} минимальны. Такая задача, строго говоря, является некорректной, так как существует множество различных состояний атмосферы \mathbf{x} , которые дают почти идентичные спектры. Методы решения таких некорректных задач известны [17]. В нашем ПО реализован алгоритм решения, основанный на статистическом методе оптимального оценивания и сводящийся к минимизации целевой функции

$$J(\mathbf{x}) = \begin{bmatrix} \mathbf{y}_T - F_T(\mathbf{x}) \end{bmatrix}^T \mathbf{S}_T^{-1} \begin{bmatrix} \mathbf{y}_T - F_T(\mathbf{x}) \end{bmatrix} + \begin{bmatrix} \mathbf{y}_N - F_N(\mathbf{x}) \end{bmatrix}^T \times \mathbf{S}_N^{-1} \begin{bmatrix} \mathbf{y}_N - F_N(\mathbf{x}) \end{bmatrix} + \begin{bmatrix} \mathbf{x} - \mathbf{x}_a \end{bmatrix}^T \mathbf{S}_a^{-1} \begin{bmatrix} \mathbf{x} - \mathbf{x}_a \end{bmatrix}, \quad (3)$$

где **х** — вектор атмосферных параметров, состоящий из вертикального профиля натуральных логарифмов концентрации N основного изотополога водяного пара и вертикального профиля HDO размерности n: $(ln(N(H_2O))_1, ..., ln(N(H_2O))_n, ln(N(HDO)_{n+1}, ..., ln(N((HDO)_{2n});$ **S** $_a — априорная ковариационная матрица атмосферных параметров;$ **S**_{*t*},**S**_{*t*},**с**,**к**овариационные матрицы ошибок измерения теплового и ближнего ИК-диапазонов.

Поскольку уравнения, связанные с переносом излучения в атмосфере, нелинейны, целевая функция (3) минимизируется методом Гаусса—Ньютона по итерационной формуле

$$\mathbf{x}_{i+1} = \mathbf{x}_i + \left(\mathbf{K}_i^T \mathbf{S}^{-1} \mathbf{K}_i + \mathbf{S}_a^{-1}\right)^{-1} \times \\ \times \left[\mathbf{K}_i^T \mathbf{S}^{-1} \left(\mathbf{y} - F(\mathbf{x}_i)\right) - \mathbf{S}_a^{-1} \left(\mathbf{x}_i - \mathbf{x}_a\right)\right],$$
(4)

где $\mathbf{K}_i = \mathbf{K}(\mathbf{x}_i)$ — матрица Якоби, которая состоит из производных прямой модели по компонентам вектора \mathbf{x}_i .

Спектры высокого разрешения GOSAT-2 предоставляются одним из стандартных продуктов Level-1В (L1В). Спектры содержат микроокна в тепловом и ближнем ИК для восстановления HDO [18], некоторые из них используются в том числе сетью наблюдений TCCON (таблица).

Вертикальный профиль δD определяется в несколько этапов. На первом этапе производится селекция спектров по облачности. В стандартных продуктах GOSAT-2 L1B содержится параметр «cloud_frac», указывающий процент облачности в конкретном измерении от 0 до 100%. Этот параметр получен из обработки данных расположенного на том же спутнике аэрозольного сенсора TANSO-CAI-2 (Cloud and Aerosol Imager-2), который измеряет синхронно с TANSO-FTS-2. Однако нами была проведена дополнительная процедура селекции спектров на предмет облачности, так как некоторые измерения с нулевым параметром cloud frac имели сравнительно низкую яркостную температуру. В данном случае дополнительно отбирались спектры путем вычисления разницы между восстановленной температурой поверхности (по данным из спектра) и приповерхностной температурой (данные ретроспективного климатического анализа), которая не должна превышать 5°.

На втором этапе строится модель начального приближения **x**_{*a*}. В качестве начального приближения использовались вертикальные профили тем-

Задворных И.В., Грибанов К.Г., Захаров В.И., Imasu R.

Список спектральных окон, использованных для определения H₂O и HDO из спектров GOSAT-2 в том числе измерительной сетью TCCON [18]

Определяемый газ	Интервал, см ⁻¹
GOSAT-2	
H_2O	1160,00-1190,00
HDO	1205,00-1207,50
H_2O , HDO	5015,00-5018,00
H_2O , HDO	5027,50-5029,00
H_2O , HDO	5039,00-5054,00
H_2O , HDO	5057,00-5060,00
H_2O , HDO	6378,00-6400,00
TCCON	
H2O	4563,95-4566,45
	4570,50-4573,00
	4575,90-4577,80
	4609,95-4612,15
	4620,85-4623,15
	4697,55-4701,55
	6074,975-6078,825
	6098,875-6099,825
	6125,125-6126,575
	6176,885-6177,715
	6254,15-6257,75
	6297,40-6305,30

пературы, влажности и давления, извлеченные из данных ретроспективного климатического анализа Европейского центра среднесрочных прогнозов погоды ECMWF CAMS Global Reanalysis (EAC4). Вычисление априорной ковариационной матрицы выполнено по наборам вертикальных профилей концентрации основного изотополога и HDO, полученных из выходных данных TCCON.

Далее восстанавливается вертикальный профиль температуры, затем концентрации H₂O, HDO и их полное содержание в атмосферном столбе из одновременно измеренных спектров теплового и ближнего ИК и вычисляется полное δD в атмосферном столбе.

Сравнение спутниковых и наземных измерений

Для сравнения с результатами наземных измерений были отобраны данные спутниковых измерений за 2020 г. для целевой области в радиусе 100 км от наземной измерительной станции TCCON в г. Карлсруэ (Германия). На рис. 1 показана карта спутниковых наблюдений при безоблачном небе вблизи станции.

На рис. 2 приведены временные ряды среднесуточных значений δD , восстановленных из наземных измерений TCCON совместно с результатами измерений GOSAT-2. На рис. 3 показаны значения δD , усредненные помесячно и по всей площади спутникового зондирования при использовании различных ИК-диапазонов: только теплового ИК, только ближнего ИК и обоих диапазонов совместно. Отчетливый сезонный цикл наблюдается как в среднесуточных, так и в среднемесячных наземных и спутниковых значениях δD для станции в Карлсруэ, глубина цикла составляет 50—80‰.

Рис. 1. Карта измерений GOSAT-2 вблизи наземной станции Карлсруэ (TCCON) в безоблачной атмосфере в январе – декабре 2020 г.

Рис. 2. Сравнение значений δD, полученных из измерений TCCON и GOSAT-2 за 2020 г. Данные представлены в виде средних значений за день

Рис. 3. Сравнение среднемесячных значений δD, полученных из измерений TCCON и GOSAT-2 за 2020 г. с использованием только теплового (TIR), ближнего ИК (NIR) и обоих диапазонов совместно (GOSAT-2) для станции Карлсруэ

На рис. 4 изображена диаграмма рассеяния среднемесячных значений δD , полученных по спутниковым данным (с использованием двух ИКдиапазонов) и наземным измерениям. Среднемесячные значения вблизи Карлсруэ показывают хорошую корреляцию с коэффициентом 0,85 (коэффициент детерминации $R^2 = 0,72$); между среднесуточными значениями он составляет 0,73. Коэффициент наклона при приближении к прямой равен 0,76. Данные среднемесячных концентраций δD , полученных с использованием ИК-диапазонов по отдельности, показали корреляцию ниже: коэффициент 0,80 ($R^2 = 0,64$) при использовании только теплового ИК и 0,70 ($R^2 = 0,49$) — только ближнего ИК.

Рис. 4. Диаграмма рассеяния среднемесячных значений δD (GOSAT-2/TCCON) для теплового (TIR) (*a*), ближнего ИК (NIR) (*б*) и обоих диапазонов совместно (*в*)

Небольшая выборка данных пока не позволяет сделать обоснованный статистический вывод или воспользоваться методами непараметрической статистики. Высокая вариабельность измеряемых параметров в атмосфере, неточное совпадение координат и времени спутниковых и наземных измерений, несомненно, вносят вклад в расхождения результатов наземного и спутникового зондирований. Другим источником расхождений являются методы обращения спектральных данных. Метод, применяемый в сети TCCON, не является высокочувствительным, поскольку осуществляется вариация выбранного профиля начального приближения как целого ради получения оценки полного содержания в атмосферном столбе. Метод, описанный в данной статье, чувствителен к вариациям в нижней (NIR) и верхней (TIR) частях тропосферы, поэтому процедура восстановления полного содержания **δ**D несколько искажает вертикальный профиль начального приближения. Это также является источником расхождений между данными наземного и спутникового зондирования, однако подробное изучение этих расхождений оставлено за рамками данной статьи.

Заключение

В данной работе оригинальный метод, ранее предложенный в [19], апробирован на реальных спектрах, регистрируемых спутниковыми ИК-сенсорами высокого разрешения. Восстановлен вертикальный профиль содержания HDO, H₂O, а также среднего относительного содержания HDO (δD) в атмосферном столбе методом одновременного обращения спектров теплового и ближнего ИК-диапазонов спутникового сенсора TANSO-FTS/GOSAT-2. Проведен сравнительный анализ восстановленных значений **б**D с данными наземных дистанционных измерений на станции сети TCCON, расположенной в Карлсруэ (Германия), за 2020 г. Среднемесячные результаты восстановления GOSAT-2 вблизи наземной станции в Карлсруэ показывают хорошую корреляцию с коэффициентом 0,72. Полученная корреляция между наземными и спутниковыми результатами свидетельствует о более высокой точности предлагаемого метода по сравнению с использованием только одного из спектральных диапазонов теплового или ближнего ИК.

Предложенный метод одновременного использования двух ИК-диапазонов для решения обратной задачи гиперспектрального зондирования атмосферы с целью восстановления относительного содержания изотопологов водяного пара может быть применен для восстановления концентрации других парниковых газов в атмосфере.

Финансирование. Работа выполнена при финансовой поддержке РНФ (грант № 18-11-00024-П).

Список литературы

- 1. *Ферронский В.И., Поляков В.А.* Изотопия гидросферы Земли. М.: Научный мир, 2009. 632 с.
- Dansgaard W. Stable isotopes in precipitation // Tellus. 1964. V. 16, N 4. P. 436–468.

Задворных И.В., Грибанов К.Г., Захаров В.И., Imasu R.

- Galewsky J., Steen-Larsen H.C., Field R.D., Worden J., Risi C., Schneider M. Stable isotopes in atmospheric water vapor and applications to the hydrologic cycle // Rev. Geophys. 2016. V. 54, N 4. P. 809–865.
- Craig H. Standard for reporting concentrations of deuterium and oxygen-18 in natural waters // Science. 1961. V. 133. P. 1833–1834.
- Wunch D., Toon G., Blavier J-F., Washenfelder R., Notholt J., Connor B., Griffith D., Sherlock V., Wennberg P. The total carbon column observing network // Phil. Trans. R. Soc. A. 2011. V. 369. P. 2087–2112.
- 6. Грибанов К.Г., Захаров В.И., Береснев С.А., Рокотян Н.В., Поддубный В.А., Ітази R., Чистяков П.А., Скорик Г.Г., Васин В.В. Зондирование HDO/H₂O в атмосфере Урала методом наземных измерений ИКспектров солнечного излучения с высоким спектральным разрешением // Оптика атмосф. и океана. 2011. Т. 24, № 2. С. 124–127; Gribanov K.G., Zakharov V.I., Beresnev S.A., Rokotyan N.V., Poddubny V.A., Imasu R., Chistyakov P.A., Skorik G.G., Vasin V.V. Sensing HDO/H₂O in the Ural's atmosphere using ground-based measurements of IR solar radiation with a high spectral resolution // Atmos. Ocean. Opt. 2011. V. 24, N 4. P. 369–372.
- 7. Грибанов К.Г., Захаров В.И. О возможности мониторинга соотношения содержаний HDO/H₂O в атмосфере, используя наблюдения из космоса уходящего теплового излучения // Оптика атмосф. и океана. 1999. Т. 12, № 9. С. 858–860.
- Lee X., Sargent S., Smith R., Tanner B. In situ measurement of the water vapor ¹⁸O/¹⁶O isotope ratio for atmospheric and ecological applications // J. Atmos. Ocean. Tech. 2005. V. 22. P. 555–565.
- 9. Zakharov V.I., Imasu R., Gribanov K.G., Hoffmann G., Jouzel J. Latitudinal distribution of the deuterium to hydrogen ratio in the atmospheric water vapor retrieved from IMG/ADEOS data // Geophys. Res. Lett. 2004. V. 31, N 12. P. 723–726.3.
- 10. Schneider A., Borsdorff T., van de Brugh J., Hu H., Landgraf J. A full-mission data set of H₂O and HDO columns from SCIAMACHY 2.3 μm reflectance measurements // Atmos. Meas. Tech. 2018. V. 11. P. 3339– 3350.
- Schneider M., Hase F. Optimal estimation of tropospheric H₂O and δD with IASI/METOP // Atmos. Chem. Phys. 2011. V. 11. P. 11207–11220.
- 12. Frankenberg C., Wunch D., Toon G., Risi C., Scheepmaker R., Lee J.-E., Wennberg P., Worden J.

Water vapor isotopologue retrievals from high-resolution GOSAT shortwave infrared spectra // Atmos. Meas. Tech. 2013. V. 6. P. 263–274.

- 13. Suto H., Kataoka F., Kikuchi N., Knuteson R., Butz A., Haun M., Buijs H., Shiomi K., Imai H., Kuze A. Thermal and near-infrared sensor for carbon observation Fourier transform spectrometer-2 (TANSO-FTS-2) on the Greenhouse gases Observing SATellite-2 (GOSAT-2) during its first year in orbit // Atmos. Meas. Tech. 2021. V. 14, N 3. P. 2013–2039.
- 14. Gribanov K.G., Zakharov V.I., Tashkun S.A., Tyuterev VI.G. A New software tool for radiative transfer calculations and its application to IMG/ADEOS data // J. Quant. Spectrosc. Radiat. Transfer. 2001. V. 68, N 4. P. 435-451.
- 15. Задворных И.В., Грибанов К.Г., Захаров В.И., Ітази R. Программное обеспечение для моделирования переноса излучения теплового и ближнего ИКдиапазонов в атмосфере с учетом многократного рассеяния // Оптика атмосф. и океана. 2017. Т. 30, № 2. С. 128–133; Zadvornykh I.V., Gribanov K.G., Zakharov V.I., Imasu R. Radiative transfer code for the thermal and near-infrared regions with multiple scattering // Atmos. Ocean. Opt. 2017. V. 30, N 4. P. 305–310.
- 16. Spurr R.J. VLIDORT: A linearized pseudo-spherical vector discrete ordinate radiative transfer code for forward model and retrieval studies in multilayer multiple scattering media // J. Quant. Spectrosc. Radiat. Transfer. 2006. V. 102, N 2. P. 316–342.
- Rogers C.D. Inverse Methods for Atmospheric Sounding. Theory and Practice. Singapore: World Scientific, 2000. 206 p.
- Boesch H., Deutscher N.M., Warneke T., Byckling K., Cogan A.J., Griffith D.W.T., Notholt J., Parker R.J., Wang Z. HDO/H₂O ratio retrievals from GOSAT // Atmos. Meas. Tech. 2013. V. 6. P. 599–612.
- 19. Задворных И.В., Грибанов К.Г., Денисова Н.Ю., Захаров В.И., Ітази R. Метод определения вертикального профиля отношения концентраций HDO/H₂O в атмосфере из спутниковых спектров, измеренных одновременно в двух спектральных диапазонах: тепловом и ближнем ИК // Оптика атмосф. и океана. 2020. Т. 33, № 11. С. 831–835; Zadvornykh I.V., Gribanov K.G., Denisova N.Yu., Zakharov V.I., Imasu R. Method for retrieval of the HDO/H₂O ratio vertical profile in the atmosphere from satellite spectra simultaneously measured in thermal and near-IR ranges // Atmos. Ocean. Opt. 2021. V. 34, N 2. P. 81–86.

I.V. Zadvornykh, K.G. Gribanov, V.I.Zakharov, R. Imasu. Retrieval of HDO relative content in atmosphere from simultaneous GOSAT-2 measurements in the thermal and near-IR.

In with paper we demonstrate the application of original method for solving the inverse problem of hyperspectral satellite sensing to retrieval of the vertical profile of HDO/H₂O ratio in the Earth's atmosphere with the simultaneous use of thermal and near-IR spectra is described. This method is used to retrieve relative abundance of HDO isotopologue (δ D) in atmospheric water vapor from measurements of TANSO-FTS IR spectrometer onboard GOSAT-2 satellite for the first time. Retrieved δ D-values are compared with data obtained at ground-based TCCON measurement station in Karlsruhe, Germany. The simultaneous use of satellite spectra of outgoing atmospheric radiation in the thermal range and reflected solar radiation in the near-IR shows a higher correlation between monthly average δ D satellite values of and ground-based data.