С.Т. Пенин, Г.Г. Фомин, Л.К. Чистякова

СВЕРХКОРОТКОВОЛНОВОЕ ИЗЛУЧЕНИЕ ЛАЗЕРНОЙ ПЛАЗМЫ ВОДНОГО АЭРОЗОЛЯ

Экспериментально обнаружено существование рентгеновского излучения в эмиссионном спектре лазерной плазмы, индуцированной излучением ${\rm CO}_2$ -лазера микросекундной длительности на водяной капле. Обсуждаются возможные физические механизмы возбуждения наблюдаемого излучения и типы его спектров.

Исследованиям эмиссионных спектров плазмы оптического пробоя, инициируемой на частицах аэрозоля различной природы, мощным лазерным излучением уделялось в последнее время много внимания. Проводимые эксперименты по спектральному анализу такой плазмы охватывают область спектра от вакуумного ультрафиолета до инфракрасной. Однако оставлен без внимания вопрос о существовании в спектре излучения плазмы более коротковолнового излучения с λ 20 нм. Большое количество работ, посвященных исследованию рентгеновских спектров лазерной плазмы, связано с проблемой термоядерного синтеза, в частности, рассматривается плазма, инициируемая сверхмощным лазерным излучением на поверхности различных мишеней. В такого рода исследованиях используются многоканальные лазерные системы и достигаются плотности мощности излучения $P \sim 10^{12} - 10^{16} \, \mathrm{Bt/cm^2}$ ([1] и литература к ней).

Однако нельзя игнорировать возможность существования рентгеновского излучения в спектре аэрозольно-индуцированной плазмы, в связи с чем нами проводилось детектирование сверхкоротковолнового излучения плазмы оптического пробоя, инициированного излучением импульсного СО₂-лазера на водяной капле (рисунок).

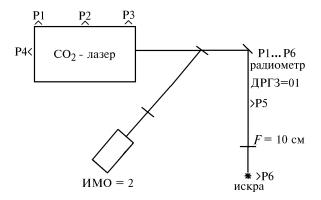


Схема эксперимента. Энергия лазерного импульса 6 Дж, плотность мощности в фокусе $10^9\,\mathrm{Bt/cm^2}$

В наших экспериментах по взаимодействию лазерного излучения с частицами аэрозоля используются лазеры с меньшей энергетикой и с $P \sim 10^7 - 10^{10}\,\mathrm{Br/cm^2}$.

Для создания плазмы пробоя использовался лазер с энергией в импульсе до 6 Дж при длительности импульса 1,5 мкс. Длительность пика по половине высоты составляла 300 нс. Излучение фокусировалось линзой с фокусным расстоянием F=10 см, при этом достигалась плотность мощности в фокусе не выше $P \sim 10^9$ Вт/см², что превышает энергетические пороги оптического пробоя как на мишенях [2], так и на водном аэрозоле [3–5]. Капля недистиллированной воды радиусом 1 мм помещалась в фокальной плоскости на нити из клея БФ размером

5–10 мкм. Детектирование излучения плазмы проводилось стандартным радиометром типа ДРГЗ-01, предназначенным для измерения дозы рентгеновского и γ-излучения с чувствительным элементом из NaJ. Прибор размещался на расстоянии 10 см от капли. Измерения проводились от уровня фона. Для того чтобы исключить возможное влияние излучений импульсного источника питания лазера и газового разряда, проводились измерения в отсутствие пробоя, когда излучение лазера фокусировалось в воздух.

Эксперимент проводился в следующем порядке: 1) пробой инициировался на капле воды, затем 2) на стальной пластине и 3) на частице дюралюминия. Входное окно прибора закрывалось экраном из черной бумаги для отсечения β-излучения.

В результате измерений было однозначно установлено присутствие в эмиссионном спектре плазмы сверхкоротковолнового излучения.

Измеренная мощность дозы (мкР/с) для стальной пластины, воды и дюралюминия (табл. 1) относится как 1:2:4 и составляет соответственно 0,01, 0,02, и 0,04 мкР/с. Поскольку измерения проводились прибором, предназначенным для измерения γ -излучения, следует сразу оговориться, что регистрируемое излучение не может являться γ -излучением, так как для его появления требуется возбуждение ядра и <горячие> электроны с энергией порядка сотен килоэлектронвольт.

Таблица 1

Положение радиометра	Мощность дозы, мкР/с
P1P4	0,02
Р5 (без пробоя)	0,00
Р5 (пробой на капле)	0,00
Р6 (пробой на капле)	0,02
Р6 (пробой на стальной пластине)	0,01
Р6 (пробой на алюминии)	0,04

Следовательно, регистрировалось безусловно рентгеновское излучение. Как известно, рентгеновское излучение является результатом взаимодействия высокоэнергетических электронов с атомами и проявляется либо в виде тормозного излучения с непрерывным спектром, ограниченным по частоте неравенством $v < mv^2/2\ h$, где v – частота излучения; v – скорость электронов; h – постоянная Планка, либо в виде характеристического спектра, обусловленного возбуждением атомных электронов с глубоких энергетических уровней. Излучение, регистрируемое в эксперименте, содержит, скорее всего, как непрерывный, так и характеристический спектры.

При тех параметрах плазмы, которые характерны для оптического пробоя на аэрозолях: средняя электронная температура T_e равна $\sim 10^4 \div 10^5$ K, плотность электронов $N_e \sim 10^{17} \div 10^{19}$ см⁻³, появление рентгеновского излучения вызвано, по всей видимости, <горячими> электронами из <хвоста> максвелловского распределения электронов по энергиям. Другие причины, связанные с параметрическими неустойчивостями [1–6], не могут проявиться, так как подобные эффекты имеют более высокие пороги появления $P \sim 10^{12} \div 10^{14}$ Вт/см² (табл. 2). Хотя эксперимент носил предварительный характер, и полученных данных недостаточно, однако на их основании можно сделать вывод относительно различия в показаниях прибора для разных веществ. Наиболее вероятной причиной могут являться линии характеристического спектра.

Из анализа рентгеновских термов элементов видно [7], что характеристический рентгеновский спектр железа имеет линии с $\lambda \sim 1 \div 2$ нм, для возбуждения которых требуется энергия $0.5 \div 1$ кэВ.

Таблица 2

Механизмы неустойчивости	Порог проявления, Вт/см ²	Литературный источник
Апериодическая неустойчивость	> 10 ¹⁴	[1]
Плазменные волны	$2 \cdot 10^{12}$	[1]
Распад на два плазмона	$7,5 \cdot 10^{13}$	[1]
Бриллюэновская	10^{12}	[6]
Рамановская	$5 \cdot 10^{12}$	[6]

В то же время характеристический спектр алюминия содержит линии L-серии L_{α_1} и L_{α_2} , связанные с переходами между уровнями 3 $d_{5/2} \to 2~p_{3/2}$ и 3 $d_{3/2} \to 2~p_{1/2}$ соответственно. Для возбуждения этих линий с $\lambda \sim 17$ нм требуются электроны с энергией всего ~ 70 эВ.

Что касается пробоя на каплях воды, то основной вклад в рентгеновское излучение вносят, по-видимому, вещества, содержащиеся в воде в виде различных солей. Более однозначные утверждения можно будет сделать после дальнейших экспериментов по регистрации рентгеновских спектров аэрозольно-индуцированной плазмы. Исследования таких спектров могут дать дополнительную информацию о физике процессов зарождения, образования и развития плазменных очагов, инициируемых лазерным излучением на частицах реального атмосферного аэрозоля.

```
1. Басов Н.Г. и др. // ЖЭТФ. 1974. T. 67. C. 118.
```

- 5. Землянов А.А., Кузиковский А.В., Чистякова Л.К./ЖТФ. 1981. Т. 51. Т. 7. С. 1439.
- 6. K r u e r W . L . / Progress in lasers and laser fusion, eds. Krusungolu B., Perlmutter A., and Widmayer S.M. Plenum Press, N Y
- 7. Таблицы физических величин /Под ред. И.К.Кикоина. М.:Атомиздат, 1976. 1006 с.

Институт оптики атмосферы СО РАН г. Томск

Поступила в редакцию 31 января 1994 г.

S.T. Penin, G.G. Fomin, L.K. Chistyakova. Ultrashort-Wave Emission of Plasma Initiated in Water Droplet Aerosol with a Laser Beam.

In this paper we present experimental results on observation of x-ray emission from plasma initiated in a water droplet with a CO_2 -laser radiation of microsecond duration. Possible physical mechanisms of producing this emission and types of its spectra are discussed.

^{2.} Metz S. A. et al. // J.Appl.Phys. 1975. V. 46. N 4. P. 1634.

^{3.} Lencioni D.E. // Appl.Phys.Lett. 1974. V. 25. P. 15.

^{4.} Pinnick R.G. et al. // Appl.Opt. 1988. V. 27. N. 5. P. 997.