Ю.И. Терентьев

ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ ДИФРАКЦИИ СВЕТА НА ТОНКОМ ЭКРАНЕ С ПРЯМОЛИНЕЙНЫМ КРАЕМ

Институт оптики атмосферы СО РАН, Томск

Поступила в редакцию 22.01.99 г.

Принята к печати 2.03.99 г.

Проведено сравнение с экспериментальным положением положения полос относительно границы геометрической тени в дифракционной картине от экрана на основе представлений Юнга и Френеля.

Установлено соотношение между потоком краевого света, выходящим из произвольного участка зоны отклонения тонкого экрана, и падающим на него световым потоком.

В работе [1] приведена формула

$$h_{\rm II} = \sqrt{(k_0 + k) \, \lambda \, L \, (L + l)/l} \,,$$
 (1)

характеризующая положение полос в дифракционной картине от тонкого экрана с прямолинейным краем на основе интерференции лучей, распространяющихся от края экрана с прямопроходящим светом, где $h_{\rm II}$ — расстояние до полос от границы тени (г.т.); l,L — расстояния соответственно от линейного источника света до экрана и от экрана до плоскости наблюдения дифракционной картины; (k_0+k) — число $\lambda/2$ в геометрической разности хода между интерферирующими лучами: $k=0,2,4,\ldots$ — соответствует максимумам; $k=1,3,5,\ldots$ — минимумам; $k_0=0,69$. Наличие в формуле k_0 показывает, что краевые лучи в момент образования испытывают сдвиг относительно лучей, распространяющихся без отклонения, в виде опережения на k_0 $\lambda/2$.

Для определения k_0 использовались следующие формулы:

$$h_{\text{max}_1} = \left[2\lambda L (L+l)/l - h_{21}^2\right]/2 h_{21};$$
 (2)

$$k_0 = h_{\text{max}}^2 l/\lambda L (L + l), \tag{3}$$

где h_{21} — расстояние между первым и вторым экспериментальными максимумами.

Согласно табл. 1–3 [1] расчетные значения $h_{\rm n}(h_{\rm p})$ находятся в хорошем соответствии с экспериментальными, если принять за г.т. точку, удаленную от \max_1 на $h_{\rm p}$, и несколько отличаются для \max_1 , \min_1 от $h_{\rm n}$, найденных на основе спирали Корню.

Дальнейшие исследования [2] показали, что над поверхностью тел (экранов) существуют зоны, в которых происходит отклонение световых лучей по обе стороны первоначального направления их распространения, являющееся основной причиной образования краевой волны [3] (граничной дифрагированной волны [4]). Согласно экспериментам рассмотренное отклонение растет с уменьшением расстояния h_3 от первоначальных траекторий лучей до края экрана.

В свете данных фактов определяемое формулой (1) $h_{\rm II}$ является расстоянием не до классической границы тени (КГТ), а до проекции падающих лучей (ППЛ₁), идущих

после отклонения в зоне отклонения экрана в виде краевых лучей в \max_1 дифракционной картины [5]. Расстояние же от полос до КГТ (рис. 1)

$$H = \left[\frac{h_3(L+l)}{l} + h\right] = \left[\frac{h_3(L+l)}{l} + \sqrt{(k_0+k)\frac{\lambda L(L+l)}{l}}\right], (4)$$

где 2-й член определяет расстояние от полос до соответствующих проекций падающих лучей, из которых в результате отклонения в зоне образуются идущие в полосы краевые лучи.

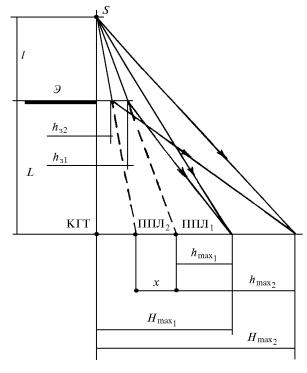


Рис. 1. Схема дифракции на тонком экране с прямолинейным краем светового пучка от линейного источника света

Распространяющаяся в область тени экрана краевая волна также имеет начальный сдвиг относительно падаю-

щей, равный по величине начальному сдвигу краевой волны, распространяющейся в направлении от экрана, но обратный по знаку [5]. В таком случае между компонентами краевой волны, распространяющимися в тень экрана и на освещенной стороне, должен быть сдвиг $2k_0\lambda/2 = 1,38 \lambda/2$. Согласно же теории и экспериментам [1] он равен $\lambda/2$, т.е. $k_0 = 0,5$.

По-видимому, определяемое рассмотренным способом $k_0 = 0,69$ завышено вследствие приближенного характера формул (2), (3), так как они получены в предположении, что краевые лучи образуются непосредственно у края экрана и k_0 не зависит от углов их отклонения.

При учете отклонения краевых лучей с различных расстояний от края экрана и возможного изменения k_0 с ростом порядка полос дифракционной картины формула (2) приобретает вид

$$h_{\text{max}_1} = \frac{(k_{02} - k_{01} + 2) \lambda L (L + l)/l - (h_{21} + x)^2}{2 (h_{21} + x)},$$
 (5)

где x — расстояние между проекциями $\Pi\Pi\Pi_1$, $\Pi\Pi\Pi_2$ первоначальных траекторий падающих лучей, идущих после отклонения в 1-й и 2-й максимумы. Как видно, появление в формуле x уменьшает h_{\max_1} и, следовательно, определяемую по (3) величину k_0 .

В работе [6] экспериментально установлена зависимость между углами отклонения є краевых лучей в зоне отклонения тонкого экрана с прямолинейным краем от расстояния между их первоначальными траекториями и краем экрана, имеющая вид

$$h_3 = (259.5 - 0.786 \epsilon)/\epsilon$$
 (6)

 $(h, \, \text{мкм}; \, \epsilon, \, \text{мин}).$

Это обстоятельство позволяет по формуле (4) рассчитывать положение полос в дифракционной картине относительно КГТ, находя ϵ по формуле

$$\varepsilon = 3438' \ h/L$$
.

В табл. 1 приведены расчетные значения $H(H_{\rm p})$, экспериментальные $H_{\rm 3}$, значения H на основании спирали Корню $H_{\rm K}$ и значения $h_{\rm II}$, определяемые по формуле (1), где $\Delta H_{\rm 3,p}=(H_{\rm 3}-H_{\rm p}),~\Delta H_{\rm p,K}=(H_{\rm p}-H_{\rm K}),~J_{\rm f.T}$ — относительная интенсивность света в дифракционной картине на КГТ.

В соответствующих экспериментах экраном являлась прямоугольная стеклянная призма, развернутая на 11° относительно ребра прямого угла в сторону ухода смежной грани от оси светового пучка. Согласно [7] при таком угле поворота призма эквивалентна тонкому экрану.

В качестве источника света использовалась щель шириной 30 мкм, освещаемая параллельным пучком зеленого света с $\lambda=0.53$ мкм, выделенного интерференционным фильтром из излучения лампы накаливания.

Для регистрации света использовался ФЭУ. Сканирование дифракционной картины производилось щелью шириной 20 мкм.

Как следует из сравнения табличных данных, значения $H_{\rm p},\ J_{\rm r.r.}$, найденные при $k_0=0.5$, практически совпадают с соответствующими значениями $H_{\rm K},\ J_{\rm K,r.r.}$. Для согласования же $H_{\rm p}$ с $H_{\rm s}$ необходимо с ростом порядка полос постепенно увеличивать k_0 до k_0' .

Содержащиеся в табл. 1 значения k_0' найдены по формуле

$$k'_{0} = \left[(h + \Delta H_{3,p}) / \sqrt{\lambda L (L + l) / l} \right]^{2} - k.$$
 (7)

Таблица 1

$l = \infty$; $L = 99.5 \text{ MM}$										
Полоса	k	<i>H</i> ₃, мм	$H_{\rm p}$, mm	H_{K} , mm	$h_{\scriptscriptstyle \Pi}$, MM	$\Delta H_{3,p}$, MKM	$\Delta H_{\rm p,K}$, mkm	h_3 , мкм	ε, мин	k_0'
max ₁	0	0,208	0,208	0,206	0,191	0	2	45,5	5,6	0,5
\min_{1}	1	0,315	0,307	0,306	0,299	8	1	25,9	9,7	0,586
max_2	2	0,395	0,383	0,382	0,377	12	1	19,9	12,6	0,668
min ₂	3	0,4675	0,4463	0,445	0,441	21,2	1,3	16,7	14,8	0,853
max ₃	4	0,519	0,5018	0,495	0,497	17,2	6,8	14,6	16,8	0,822
min ₃	5	0,5715	0,5518	0,544	0,548	19,7	7,8	13,2	18,6	0,91
max ₄	6	0,619	0,5976	0,601	0,594	21,4	-3,4	12	20,2	0,984
				$l=\infty$;	L = 279,5	$MM; J_{r.r} = 0,24$	47			
max_1	0	0,349	0,349	0,346	0,32	0	3	76,8	3,35	0,5
min_1	1	0,548	0,515	0,513	0,5	33	2	44	5,8	0,71
max_2	2	0,684	0,642	0,640	0,63	42	2	33,9	7,5	0,85
min_2	3	0,794	0,748	0,746	0,739	46	2	28,5	8,86	0,96
max_3	4	0,892	0,841	0,830	0,834	51	11	25,1	10	1,07
min_3	5	1,004	0,925	0,912	0,918	79	13	22,6	11,1	1,51
				l = 24	; $L = 99,5$	$J_{\text{\tiny F.T}} = 0.25$	52			
****	0	0,469	0,469	0,468	0,433	0	1	19,6	12.7	0,5
max ₁			0,469	0,408		27		19,0	12,7 22	
min ₁	1	0,721 0,901	0,867	0,866	0,686	34	0 1		28,5	0,627
max ₂	2		,	,	0,865		1	8,33		0,71
min ₂	3	1,042	1,010	1,009	1,006	31	_	6,92	33,7	0,728
max ₃	4	1,162	1,136	1,124	1,126	26	12	6	38,2	0,71
min ₃	5	1,290	1,249	1,234	1,249	41	15	5,36	42,2	0,868
max_4	6	1,387	1,353	1,363	1,351	34	– 10	4,87	45,9	0,836

Благодаря выясненному характеру зависимости между h_3 и ϵ , становится возможным сравнение краевого

потока, выходящего с какого-либо участка зоны отклонения, с падающим на этот участок световым потоком.

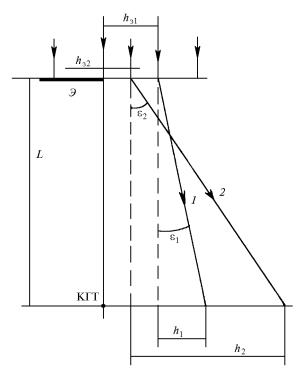


Рис. 2. Схема дифракции на тонком экране с прямолинейным краем плоской световой волны

На рис. 2 приведена схема, соответствующая дифракции на экране \mathcal{I} плоской волны. В ней лучи I, 2 отклоняются в зоне отклонения экрана с расстояний h_{31} , h_{32} от него на углы ϵ_1 , ϵ_2 , падая на расстояниях h_1 , h_2 от проекций их первоначальных траекторий на плоскость дифракционной картины, удаленную от экрана на L.

На основании [8] интенсивность краевого света в случае плоской падающей волны

$$J_{K} = 0.02046 \ \lambda L J_{C} / h^{2}, \tag{8}$$

где $J_{\rm c}$ – интенсивность падающего света.

Вследствие этого выходящий с участка зоны отклонения $\Delta h_3 = (h_{31} - h_{32})$ краевой поток

$$\Phi_{\kappa} = \int_{h_2}^{h_1} J_{\kappa} dh = 0.02046 \ \lambda L J_{c} \left(\frac{1}{h_1} - \frac{1}{h_2} \right)$$
 (9)

при падающем на этот участок световом потоке $\Phi_{\Pi} = \Delta h_3 J_c$, где $h_1 = L$ tg ϵ_1 ; $h_2 = L$ tg ϵ_2 ; $h_{31} = (259, 5 - 0, 786 \; \epsilon_1) / \; \epsilon_1$; $h_{32} = (259, 5 - 0, 786 \; \epsilon_2) / \; \epsilon_2$.

В табл. 2 приведены значения $\Phi_{\rm n}/\Phi_{\rm k}$ для произвольных значений ϵ_1 , ϵ_2 . Данные табл. 2 позволяют сделать вывод о том, что величина этого отношения на различных углах дифракции постоянна и равна в среднем 7,05.

Таблица 2

ϵ_{l} , мин	ε ₂ , мин	h_1 , MM	h_2 , MM	h_{31} , мкм	Δh_3 , MKM	$\Phi_{\text{II}}/\Phi_{\kappa}$
5	12	0,3	0,7	51,114	30,275	7,33
12	18	0,7	1,04	20,839	7,2084	7,12
30	35	1,74	2,04	7,864	1,2358	6,74
60	70	3,5	4,08	3,539	0,6179	7,01
130	140	7,56	8,14	1,2101	0,1426	7,03

 Π р и м е ч а н и е . L = 200 мм.

При учете распространения с участков Δh_3 зоны отклонения таких же по величине [1] краевых потоков в область тени экрана $\Phi_{\rm II}/\Phi_{\rm K}$ уменьшится вдвое, но попрежнему остается больше единицы.

- 1. *Терентьев Ю.И.* // Оптика атмосферы. 1989. Т. 2. № 11. С. 1141–1146.
- 2. *Терентьев Ю.И.* // Оптика атмосферы и океана. 1995. Т. 8. № 4. С. 510–520.
- 3. Вуд Р. Физическая оптика. М.; Л.: ОНТИ, 1936.
- 4. *Борн М., Вольф* Э. Основы оптики. М.: Наука, 1973. 719 с.
- Терентьев Ю.И. // Оптика атмосферы и океана. 1996. Т. 9. № 3. С. 314–323.
- 6. *Терентьев Ю.И.* // Оптика атмосферы и океана. 1998. Т. 11. № 12. С. 1269–1273.
- 7. *Терентьев Ю.И.* // Оптика атмосферы. 1991. Т. 4. № 5. С. 462–467.
- 8. *Терентьев Ю.И.* // Оптика атмосферы. 1989. Т. 2. № 11. С. 1147–1153

Yu.I. Terentyev. Experimental Investigation of Light Diffraction on Thin Screen with Rectilinear Edge.

The experimentally obtained position of light bands relative to a boundary of geometrical shadow on the screen diffraction pattern is compared with that based on Young and Fresnel interpretation.

A proportion between the light flux incident on a thin screen and a portion of edge light deflected by an arbitrary part of the screen deflection zone has been found.