СПЕКТРОСКОПИЯ ОКРУЖАЮЩЕЙ СРЕДЫ

УДК 535.343.4

Оценка эффективности лазерного возбуждения перехода $B^2\Sigma^+(v'=0)-X^2\Pi(v''=0)$ оксида фосфора

С.М. Бобровников^{1, 2}, Е.В. Горлов^{1, 2}, В.И. Жарков^{⊠ 1}, С.Н. Мурашко²*

¹Институт оптики атмосферы им. В.Е. Зуева СО РАН 634055, г. Томск, пл. Академика Зуева, 1 ²Национальный исследовательский Томский государственный университет 634050, г. Томск, пр. Ленина, 36

> Поступила в редакцию 21.03.2022 г.; после доработки 29.03.2022 г.; принята к печати 1.04.2022 г.

Представлены результаты расчета колебательных и вращательных термов электронных состояний $X^2\Pi$ и $B^2\Sigma^+$ молекулы оксида фосфора (PO). Рассчитан спектр поглощения, соответствующий электронному переходу $B^2\Sigma^+$ (v' = 0) – $X^2\Pi$ (v'' = 0). Проведена оценка эффективности лазерного возбуждения молекул PO в зависимости от спектральных параметров излучения. Установлено, что эффективность возбуждения электронного перехода $B^2\Sigma^+$ (v' = 0) – $X^2\Pi$ (v'' = 0) молекулы PO примерно на порядок ниже, чем для перехода $A^2\Sigma^+$ (v' = 0) – $X^2\Pi$ (v'' = 0). Полученный результат имеет практическое значение с точки зрения выбора оптимальной схемы лазерного возбуждения флуоресценции PO-фрагментов при реализации метода дистанционного обнаружения органофосфатов.

Ключевые слова: оксид фосфора, РО-фрагменты, спектр поглощения, лазерное возбуждение, термализация, органофосфаты; phosphorus oxide, PO fragments, absorption spectrum, laser excitation, thermalization, organophosphates.

Введение

Метод лазерно-индуцированной флуоресценции (ЛИФ) известен своей высокой чувствительностью, позволяющей обнаруживать следовые количества веществ и даже их отдельные молекулы. Однако его нельзя применять для обнаружения сложных многоатомных молекул в силу высокой вероятности безызлучательной релаксации, характерной для систем с большим числом степеней свободы. Применение эффекта лазерной фрагментации (ЛФ) совместно с ЛИФ-методом позволяет решить эту проблему и свести задачу обнаружения сложных многоатомных соединений к задаче обнаружения более простых (двухатомных) молекул, характеризующихся сильными и хорошо разрешаемыми переходами с высоким квантовым выходом флуоресценции.

Суть ЛФ/ЛИФ-метода заключается в разделении сложной молекулы на части (фрагменты) под действием квантов лазерного излучения с последующим возбуждением флуоресценции характеристических фрагментов. В случае органофосфатов в качестве таких фрагментов-маркеров присутствия исходного соединения выступают молекулы оксида фосфора (PO) [1–3]. В последние несколько десятилетий изучению спектроскопических свойств молекулы РО было уделено значительное внимание. Краткий обзор экспериментальных и теоретических исследований можно найти, например, в [4–6]. Однако, несмотря на большое количество публикаций, посвященных разносторонним исследованиям по определению энергетической структуры РО и связанных с ней молекулярных постоянных, не выявлено работ, посвященных определению оптимальных условий для эффективного лазерного возбуждения флуоресценции РО.

Для определения оптимальной схемы возбуждения необходим аналитический вид функции распределения интенсивности полос спектров поглощения электронных переходов. С этой целью была разработана математическая модель изменения энергетических состояний молекулы РО [7], позволяющая с необходимой точностью рассчитывать спектры поглощения, соответствующие электронным переходам.

В настоящей работе приводятся результаты исследования эффективности лазерного возбуждения электронного перехода $B^2\Sigma^+(v'=0) - X^2\Pi(v''=0)$ молекул РО в зависимости от спектральных параметров возбуждающего излучения. Для этого в модели использовались спектроскопические параметры молекулы РО, уточненные на основании анализа литературных источников и баз данных [6, 8–18].

^{*} Сергей Михайлович Бобровников (bsm@iao.ru); Евгений Владимирович Горлов (gorlov_e@mail.ru); Виктор Иванович Жарков (zharkov@iao.ru); Сергей Николаевич Мурашко (msn_17@mail.ru).

[©] Бобровников С.М., Горлов Е.В., Жарков В.И., Мурашко С.Н., 2022

Расчет спектра поглощения молекулы PO, соответствующего переходу $B^2\Sigma^+$ (v'=0) – $X^2\Pi$ (v''=0)

Колебательные и вращательные термы электронных состояний X²Π и B²Σ⁺ молекулы PO

В [19] на примере диметилметилфосфоната показано, что в процессе диссоциации органофосфатов под действием лазерного УФ-излучения образуются РО-фрагменты, 95% которых находятся в нижнем колебательном состоянии. С учетом факторов Франка-Кондона для полос $B^{2}\Sigma^{+}(v')$ - – X²П (v'' = 0) [6, 12] практический интерес вызывает переход $B^2 \Sigma^+ (v' = 0) - X^2 \Pi (v'' = 0)$ как наиболее интенсивный. Для исследования эффективности использования этого перехода при обнаружении РО-фрагментов органофосфатов необходима аналитическая зависимость интенсивности электронноколебательно-вращательных полос, возникающих в процессе возбуждения. С этой целью были уточнены параметры модели молекулы РО по литературным данным и произведен расчет спектра поглощения перехода $B^2 \Sigma^+ (v' = 0) - X^2 \Pi (v'' = 0).$

Значения колебательных и вращательных термов двух компонент $X^2\Pi_{1/2}$ и $X^2\Pi_{3/2}$ основного состояния молекулы РО были извлечены из базы данных ExoMol (www.exomol.com) [17]. Полученные значения вращательных термов уровня v'' = 0 состояния $X^2\Pi$ можно найти в [7]. Для определения энергетической структуры состояния $B^2\Sigma^+$ использовались молекулярные постоянные из [18] и выражения термов через них [20]. Рассчитанные таким способом значения вращательных термов состояния $B^2\Sigma^+$ (v' = 0) представлены в табл. 1.

Вращательная структура электронной полосы $B^{2}\Sigma^{+}(v'=0) - X^{2}\Pi(v''=0)$

При определении положения линий для полос $B^2 \Sigma^+ - X^2 \Pi$ рассматривались переходы, отвечающие правилам отбора

$$\Delta J = 0, \ e \leftrightarrow f;$$

$$\Delta J = \pm 1, \ e \leftrightarrow e, \ f \leftrightarrow f$$

Результат расчета представлен в табл. 2.

Каждая полоса перехода $B^2\Sigma^+ - X^2\Pi$ может быть разделена на полосы $B^2\Sigma^+ - X^2\Pi_{1/2}$ и $B^2\Sigma^+ - X^2\Pi_{3/2}$, которые отстоят одна от другой на величину дублетного расщепления состояния $X^2\Pi$. Для каждой полосы могут иметь место шесть ветвей. Для полосы $B^2\Sigma^+ - X^2\Pi_{1/2}$ ветви Q_{11} , P_{11} , R_{11} – основные, Q_{21} , P_{21} , R_{21} – ветви-сателлиты. Для полосы $B^2\Sigma^+ - X^2\Pi_{3/2}$ ветви Q_{22} , P_{22} , R_{22} – основные, Q_{12} , P_{12} , R_{12} – ветвисателлиты. Вследствие малого дублетного расщепления состояния $B^2\Sigma^+$ ветви Q_{11} и P_{21} , P_{22} и Q_{12} не разрешаются, так как попарно лежат очень близко друг к другу. Поэтому каждая полоса, $B^2\Sigma^+(v'=0) - X^2\Pi_{1/2}(v''=0)$ и $B^2\Sigma^+(v'=0) - X^2\Pi_{3/2}(v''=0)$, имеет только пять ветвей, одна из которых образует двойной кант с фиолетовым оттенением.

Распределение интенсивности во вращательной структуре

Распределение интенсивности во вращательной структуре электронной полосы перехода $B^2\Sigma^+(v'=0) - X^2\Pi(v''=0)$ определялось так же, как в [7]. Расчетный спектр полосы поглощения при температуре T = 300 К с учетом столкновительного уширения линий представлен на рис. 1. Переход от волновых чисел (см. табл. 2) к длинам волн

Таблица 1

J - 0,5	F_1	F_2	J - 0,5	F_1	F_2
0	31309,76475	31311,25536	20	31621,07911	31652,33606
1	31311,24516	31314,22635	21	31652,18986	31684,93055
2	31314,20935	31318,68107	22	31684,77755	31719,00131
3	31318,65727	31324,61941	23	31718,84151	31754,54766
4	31324,58881	31332,04127	24	31754,38106	31791,56888
5	31332,00387	31340,94649	25	31791,39548	31830,06424
6	31340,90229	31351,3349	26	31829,88404	31870,03295
7	31351,2839	31363,20628	27	31869,84595	31911,47422
8	31363,14848	31376,5604	28	31911,28042	31954,3872
9	31376,4958	31391,39699	29	31954,1866	31998,77104
10	31391,32559	31407,71576	30	31998,56364	32044,62483
11	31407,63756	31425,51636	31	32044,41063	32091,94767
12	31425,43136	31444,79846	32	32091,72667	32140,73859
13	31444,70666	31465,56166	33	32140,51079	32190,99661
14	31465,46306	31487,80554	34	32190,76201	32242,72072
15	31487,70014	31511,52965	35	32242,47932	32295,90988
16	31511,41745	31536,73353	36	32295,66168	32350,56301
17	31536,61453	31563,41666	37	32350,308	32406,67901
18	31563,29086	31591,57851	38	32406,41721	32464,25675
19	31591,44591	31621,21851	39	32463,98815	32523,29507

Значения термов (в см⁻¹) состояния $B^2\Sigma^+$ (v' = 0) молекулы РО

Бобровников С.М., Горлов Е.В., Жарков В.И., Мурашко С.Н.

	R_{21}	30811,09	30815,557	30817.975	30820,326	30822,704	30825,109	30827,542	30830,002	30832,489	30835,003	30837,545	30840, 113	30842,707	30845,329	30847, 977	30850,651	30853,351	30856,078	30858,83	30861,608	30864, 412	30867,241	30870,095	30872,975	30875,879	30878,808	30881,761	30884,739	30887,741	30890,766	30893,815	30896,888	30899,984	30903, 103	30906,244	30909,408	30912, 594	30915,802	30919,031
	P_{21}	10000	30805,932	30804.615	30803,999	30803, 41	30802,849	30802,316	30801,811	30801,334	30800,884	30800,462	30800,067	30799,7	30799,361	30799,049	30798,764	30798,506	30798,276	30798,073	30797,896	30797,747	30797,624	30797,528	30797,458	30797,415	30797,398	30797,407	30797,442	30797,503	30797,59	30797,702	30797,839	30798,002	30798,189	30798,402	30798,639	30798,9	30799,186	30799,495
	Q_{21}	30808,125	30808,916	30810.58	30811,453	30812,354	30813,283	30814,24	30815,224	30816,235	30817,274	30818,341	30819,434	30820,555	30821,702	30822,877	30824,078	30825,306	30826,561	30827,842	30829,15	30830,484	30831,844	30833,23	30834,641	30836,079	30837,541	30839,029	30840,542	30842,081	30843,643	30845,231	30846,843	30848,479	30850,138	30851,822	30853,529	30855,26	30857,013	30858,79
лекулы РО	Q_{12}		30582,371	30581,987	30581,322	30580,675	30580,046	30579,434	30578,84	30578,264	30577,706	30577,166	30576,643	30576,138	30575,651	30575,181	30574,729	30574,294	30573,877	30573,477	30573,095	30572,73	30572,382	30572,051	30571,737	30571,44	30571,16	30570,897	30570,651	30570,421	30570,207	30570,01	30569,83	30569,665	30569,517	30569,384	30569,267	30569,166	30569,081	30569,01
(v'' = 0) MO.	R_{12}		30380,333	30587.919	30588,737	30589,573	30590,427	30591,299	30592,188	30593,094	30594,018	30594,96	30595,919	30596,895	30597,888	30598,899	30599,927	30600,971	30602,033	30603,111	30604,206	30605,318	30606,447	30607,591	30608,753	30609,93	30611,124	30612,333	30613,558	30614,8	30616,056	30617,329	30618,616	30619,919	30621,237	30622,57	30623,917	30625,279	30626,655	30628,046
$= 0) - X^2 \Pi$	P_{12}		30381,89	30577.539	30575,391	30573,26	30571,147	30569,052	30566,976	30564,917	30562,877	30560,854	30558,85	30556,863	30554,895	30552,945	30551,012	30549,098	30547,201	30545,323	30543,462	30541,62	30539,795	30537,988	30536,199	30534,427	30532,673	30530,937	30529,218	30527,516	30525,832	30524,166	30522,516	30520,884	30519,268	30517,67	30516,088	30514,523	30512,975	30511,444
loce $B^2\Sigma^+$ (v'	R_{22}		30599,807	30595.371	30597,68	30600,006	30602,35	30604,711	30607,089	30609,484	30611,897	30614,327	30616,774	30619,237	30621,718	30624,215	30626,728	30629,258	30631,805	30634,368	30636,946	30639,541	30642,152	30644,778	30647,42	30650,078	30652,75	30655,438	30658,141	30660,859	30663,591	30666,338	30669, 1	30671,875	30674,664	30677,468	30680,285	30683,115	30685,958	30688,815
линий в пол	R_{11}	30808,115	30808,899 30800 71	30810.549	30811,416	30812,31	30813,232	30814,182	30815,159	30816, 164	30817,196	30818,256	30819,342	30820,456	30821,597	30822,765	30823,959	30825,181	30826,428	30827,703	30829,004	30830,331	30831,684	30833,063	30834,468	30835,898	30837,354	30838,835	30840,342	30841,873	30843,429	30845,01	30846,615	30848,244	30849,897	30851, 574	30853,274	30854,998	30856,745	30858,514
исла (в см ⁻¹)	Q_{22}		30380,332	30587.949	30588,775	30589,618	30590,478	30591,356	30592,252	30593,166	30594,097	30595,045	30596,011	30596,994	30597,994	30599,011	30600,046	30601,097	30602,165	30603,251	30604,353	30605,471	30606,606	30607,758	30608,926	30610,11	30611,311	30612,527	30613,759	30615,007	30616,271	30617,55	30618,844	30620, 154	30621,478	30622,818	30624,172	30625,541	30626,924	30628,322
Волновые чі	Q_{11}	30806,628	30805,921	30804.591	30803,968	30803,373	30802,805	30802,265	30801,753	30801,269	30800,813	30800,384	30799,982	30799,608	30799,262	30798,943	30798,652	30798,387	30798,15	30797,94	30797,757	30797,6	30797,471	30797,368	30797,292	30797,242	30797,218	30797,22	30797,248	30797,302	30797,382	30797,488	30797,618	30797,774	30797,955	30798,16	30798,39	30798,645	30798,924	30799,227
	P_{22}		30582,381	30582.011	30581,353	30580,712	30580,09	30579,485	30578,898	30578,329	30577,778	30577,244	30576,728	30576,23	30575,75	30575,287	30574,841	30574,413	30574,003	30573,61	30573,234	30572,876	30572,535	30572,211	30571,904	30571,614	30571,34	30571,084	30570,844	30570,621	30570,415	30570,225	30570,051	30569,893	30569,751	30569,625	30569,515	30569,421	30569,342	30569,279
	P_{11}		30804,454	30800.17	30798,069	30795,997	30793,952	30791,936	30789,947	30787,987	30786,054	30784, 15	30782,273	30780,424	30778,603	30776,81	30775,045	30773,307	30771,597	30769,915	30768,26	30766,632	30765,032	30763,459	30761,914	30760,395	30758,904	30757,439	30756,001	30754,59	30753,205	30751,847	30750,515	30749, 209	30747,929	30746,674	30745,446	30744,242	30743,065	30741,912
	J''	0,5	1,0 7,5	3.5 2.5	4,5	5,5	6,5	7,5	8,5	9,5	10,5	11,5	12,5	13,5	14.5	15,5	16,5	17,5	18,5	19,5	20,5	21,5	22,5	23,5	24,5	25,5	26,5	27,5	28,5	29,5	30,5	31,5	32,5	33,5	34,5	35,5	36,5	37,5	38,5	39,5

<u> </u>
yJIbI
ek
10.1
()
_
2
$(^{2}\Pi)$
~
Ċ
_
2
+
$3^2\Sigma$
e l
00
LOI
B
ий
НИ
- ¹
B C
- L
СЛЕ
Иh
ble
B

Оценка эффективности лазерного возбуждения перехода $B^2\Sigma^+$ (v'=0) – $X^2\Pi$ (v''=0) оксида фосфора 363

2 Таблица

Рис. 1. Расчетный спектр поглощения молекулы РО, соответствующий переходу $B^2\Sigma^+$ (v'=0) – $X^2\Pi$ (v''=0) при T=300 К

в воздухе λ_{air} проводился с учетом дисперсионной формулы для стандартного воздуха [21]. Результаты расчетов участков спектра, соответствующих полосам $B^2\Sigma^+ - X^2\Pi_{1/2}$ и $B^2\Sigma^+ - X^2\Pi_{3/2}$, отдельно показаны на рис. 2 и 3. Для удобства идентификации ветвей на рис. 2 и 3 приведены их обозначения.

Сравнение полученных данных (рис. 1) с результатами расчетов, приведенных авторами в [7], свидетельствует о том, что интенсивности электронноколебательно-вращательных переходов $B^2\Sigma^+(v', J')$ – – $X^2\Pi$ (v'', J'') примерно на порядок величины ниже интенсивностей переходов $A^2\Sigma^+$ (v', J') – $X^2\Pi$ (v'', J''). Очевидно, что и относительная эффективность возбуждения указанных электронных переходов будет отличаться на соответствующую величину. Этот результат имеет практическое значение с точки зрения выбора оптимальной схемы лазерного возбуждения флуоресценции РО-фрагментов при реализации метода $\Lambda\Phi/\Lambda U\Phi$ для дистанционного обнаружения органофосфатов.

Отметим, что полученное на основе модели представление спектров поглощения в аналитическом виде позволяет исследовать процесс возбуждения любых разрешенных переходов $B^2 \Sigma^+ - X^2 \Pi$ молекул РО для любых возможных неравновесных состояний. При этом всегда возникает вопрос об адекватности модельного приближения. Для ее оценки необходимо результаты расчета сравнить с экспериментальными данными. Результаты такого сравнения приведены на рис. 4, где представлены экспериментальный и расчетный спектры поглощения PO, соответствующие переходу $B^2\Sigma^+$ (v'=8) – $-X^2\Pi_{3/2}(v''=7)$ при T=2500 К. Экспериментальный спектр заимствован из работы по исследованию процессов двухфотонной ионизации РО в воздушно-ацетиленовом пламени (*T* = 2000–2500 К) [12]. Хорошее согласие экспериментальных данных и результатов расчета свидетельствует об адекватности применения разработанной модели для исследования процессов возбуждения РО-фрагментов даже в случаях неравновесных состояний, возникающих в процессе фотолиза.

Рис. 2. Нормированный спектр поглощения молекулы PO, соответствующий переходу $B^2 \Sigma^+ (v' = 0) - X^2 \Pi_{1/2} (v'' = 0)$ при T = 300 К

Бобровников С.М., Горлов Е.В., Жарков В.И., Мурашко С.Н.

Рис. 3. Нормированный спектр поглощения молекулы РО, соответствующий переходу $B^2\Sigma^+$ (v' = 0) – $X^2\Pi_{3/2}$ (v'' = 0) при T = 300 К

Рис. 4. Спектры поглощения РО, соответствующие переходу $B^2\Sigma^+$ ($\upsilon' = 8$) – $X^2\Pi_{3/2}$ ($\upsilon'' = 7$) при T = 2500 K; λ_0 – центр линии генерации лазера

Оценка эффективности лазерного возбуждения молекул РО

Возбуждение молекулы РО при температуре 300 К

Из рис. 1—3 видно, что для эффективного лазерного возбуждения молекул РО, находящихся в равновесном состоянии при T = 300 К, необходимо выбирать длину волны возбуждающего излучения λ_0^{\max} , соответствующую максимуму интенсив-

ности полосы поглощения, т.е. в спектральной области расположения двойного канта ветви ($Q_{11} + P_{21}$) полосы $B^2 \Sigma^+ - X^2 \Pi_{1/2}$. В качестве критерия эффективности возбуждения в зависимости от сочетания ширины спектральной линии лазерного излучения $\Delta\lambda$ и положения ее центра λ_0 был выбран коэффициент эффективности возбуждения молекул:

$$\eta(\lambda_0, \Delta \lambda) = \frac{\int_{\lambda_1}^{\lambda_2} \sigma(\lambda) I(\lambda, \Delta \lambda) d\lambda}{\int_{\lambda_1}^{\lambda_2} I(\lambda, \Delta \lambda) d\lambda}.$$
 (1)

Оценка эффективности лазерного возбуждения перехода $B^2\Sigma^+$ (v'=0) – $X^2\Pi$ (v''=0) оксида фосфора 365

Здесь $\sigma(\lambda)$ — нормированная функция поглощения; $I(\lambda, \Delta\lambda)$ — спектральное распределение интенсивности линии лазерного излучения; λ_1 и λ_2 — границы спектрального диапазона полосы поглощения. Расчеты выполнены в предположении, что лазерная линия имеет гауссову форму; ширина линии $\Delta\lambda$ задавалась равной 1, 5, 10 и 50 пм. Результаты расчетов $\eta(\lambda, \Delta\lambda)$ для ветви ($Q_{11} + P_{21}$) полосы $B^2\Sigma^+ - X^2\Pi_{1/2}$ при равновесной населенности вращательных уровней энергии состояния $X^2\Pi$, соответствующей T == 300 К, приведены на рис. 5.

Рис. 5. Коэффициент эффективности возбуждения молекул РО в полосе ($Q_{11} + P_{21}$) при T = 300 К в зависимости от положения центра линии генерации лазера λ_0 для различных $\Delta\lambda$

Как видно из рис. 5, с уменьшением спектральной ширины линии генерации лазера $\Delta\lambda$ от 50 до 1 пм эффективность возбуждения молекулы РО увеличивается в ~1,8 раза. Поскольку кант ветви $(Q_{11} + P_{21})$ имеет фиолетовое оттенение (см. рис. 2), то с увеличением $\Delta\lambda$ положение ее центра, при котором достигается максимальное значение η (λ_0^{max}), смещается в коротковолновую область: при изменении ширины линии от 1 до 50 пм усредненная величина сдвига составляет ~ $\Delta\lambda/3$,3. Также можно заметить, что чем уже линия излучения лазера, тем чувствительнее η к ее положению и тем выше требования к стабильности длины волны излучения возбуждающего лазера. Проведенные расчеты показали, что относительное смещение

$$\delta = \frac{\lambda - \lambda_0^{\max}}{\lambda_0^{\max}},\tag{2}$$

при котором максимальное значение η уменьшается на 10% при выбранных значениях $\Delta\lambda$ (от 1 пм до 50 пм), составляет $10^{-6}-10^{-5}$. Связывая полученные значения δ с показателем относительной стабильности положения центра линии излучения лазера, можно заключить, что для обеспечения высокой эффективности возбуждения молекул РО относительная стабильность положения линии возбуждающего излучения должна быть не хуже 10^{-5} .

Возбуждение РО-фотофрагментов органофосфатов

Согласно [1, 19] при фотодиссоциации органофосфатов под действием лазерного УФ-излучения обнаруживаются РО-фрагменты, спектр возбуждения которых свидетельствует о неравновесной начальной населенности вращательных уровней энергии состояния $X^2\Pi$ (v'' = 0). В момент появления РО-фрагментов начальное значение их вращательной температуры $T_{\rm rot} = ~2700$ K [1, 7].

С течением времени в процессе вращательной релаксации (процесс термализации) происходит изменение населенности вращательных уровней, что приводит к пропорциональному изменению интенсивностей соответствующих линий поглощения и, как следствие, к изменению условий эффективного возбуждения фрагментов. В качестве примера на рис. 6 приведены зависимости коэффициента эффективности возбуждения $\eta(\lambda_0)$ при $\Delta \lambda = 5$ пм для различных вращательных температур $T_{\rm rot}$.

Рис. 6. Коэффициент эффективности возбуждения молекул РО вблизи кантов ветвей ($Q_{11} + P_{21}$) и ($P_{22} + Q_{12}$) при $\Delta \lambda = 5$ пм для различных вращательных температур

Из рис. 6 видно, что с изменением $T_{\rm rot}$ положение $\lambda_0^{\rm max}$ для ветви $(Q_{11} + P_{21})$ практически не меняется. Напротив, для ветви $(P_{22} + Q_{12})$ «горячих» РО-фрагментов максимум кривой $\eta(\lambda_0)$ смещен в область канта.

На рис. 7 показано, как при фиксированных параметрах излучения $\lambda_0 = \lambda_0^{\max}$ и $\Delta \lambda = 5$ пм в процессе термализации меняется η для рассматриваемых ветвей. Эффективность возбуждения РОфрагментов через переходы, соответствующие ветви ($Q_{11} + P_{21}$), увеличивается в 1,5 раза при $T_{\rm rot} \approx 800$ К с последующим спадом до первоначального уровня. Для ветви ($P_{22} + Q_{12}$) эффективность возбуждения к моменту полной термализации РО-фрагментов монотонно уменьшается до ~ 8 раз.

Согласно расчетам, проведенным в [7], полная термализация состояния $X^2\Pi$ (v'' = 0) РО-фрагментов органофосфатов в условиях реальной атмосферы за счет столкновения с молекулами азота

Бобровников С.М., Горлов Е.В., Жарков В.И., Мурашко С.Н.

Рис. 7. Изменение коэффициента эффективности возбуждения молекулы РО в зависимости от значения вращательной температуры при $\lambda_0 = \lambda_0^{max}$ и $\Delta \lambda = 5$ пм

и кислорода происходит не более чем за 5 нс. При этом время, необходимое для достижения РО-фрагментами $T_{\rm rot} \approx 800$ К, составляет ~ 0,6 нс. Очевидно, что в силу быстрой термализации РО-фрагментов в атмосфере для достижения максимальной эффективности возбуждения перехода $B^2\Sigma^+$ (v'=0) – $-X^2\Pi_{1/2}$ (v''=0) необходимо обеспечить одновременное воздействие фрагментирующего импульса и импульса, возбуждающего флуоресценцию РОфрагментов. А в случае использования одноимпульсной схемы возбуждения процесса $Л\Phi/ЛИ\Phi$ [22] необходимо отдать предпочтение лазерному источнику с меньшей длительностью импульса.

Заключение

При расчете спектров поглощения РО, соответствующих переходам $B^2 \Sigma^+ - X^2 \Pi$, определены колебательная и вращательная структура электронного состояния $B^2\Sigma^+$. Проведена оценка эффективности лазерного возбуждения молекул РО при инициировании переходов $B^2 \Sigma^+ (v' = 0) - X^2 \Pi (v'' = 0)$ вблизи двойного канта ветви (Q₁₁ + P₂₁) в зависимости от ширины спектральной линии лазерного излучения и положения ее центра. Расчетно показано, что максимальная эффективность возбуждения РОфрагментов органофосфатов узкополосным лазерным излучением с длиной волны, соответствующей спектральному положению канта ветви $(Q_{11} + P_{21})$ полосы $B^2 \Sigma^+ (v' = 0) - X^2 \Pi_{1/2} (v'' = 0)$, достигается при вращательной температуре ~ 800 К за ~ 0,6 нс от момента их образования.

Сравнение данных работы с результатами расчетов [7] свидетельствует о том, что эффективность возбуждения электронного перехода $B^2\Sigma^+(v'=0) - X^2\Pi(v''=0)$ молекул РО примерно на порядок ниже, чем перехода $A^2\Sigma^+(v'=0) - X^2\Pi(v''=0)$. Полученный результат имеет практическое значение с точки зрения выбора оптимальной схемы лазерного возбуждения флуоресценции РО-фраг-

ментов при реализации метода дистанционного обнаружения органофосфатов.

Финансирование. Исследование выполнено при финансовой поддержке РНФ (проект № 20-79-10297).

Список литературы

- Shu J., Bar I., Rosenwaks S. The use of rovibrationally excited NO photofragments as trace nitrocompounds indicators // Appl. Phys. B. 2000. V. 70, N 4. P. 621–625.
- Long S.R., Sausa R.C., Miziolek A.W. LIF studies of PO produced in excimer laser photolysis of dimethyl methyl phosphonate // Chem. Phys. Lett. 1985. V. 117, N 5. P. 505-510.
- Bisson S.E., Headrick J.M., Reichardt T.A., Farrow R.L., Kulp T.J. A two-pulse, pump-probe method for shortrange, remote standoff detection of chemical warfare agents // Proc. SPIE. 2011. V. 8018. P. 80180Q-1–7.
- 4. Moussaoui Y., Ouamerali O., De Maré G.R. Properties of the phosphorus oxide radical, PO, its cation and anion in their ground electronic states: Comparison of theoretical and experimental data // Int. Rev. Phys. Chem. 2003. V. 22, N 4. P. 641–675.
- 5. *Liu H., Shi D., Sun J., Zhu Z.* Accurate potential energy curves and spectroscopic properties of the 27 A-S states and 73 Ω states of the PO radical // Mol. Phys. 2017. V. 115, N 6. P. 714–730.
- Yin Y., Shi D., Sun J., Zhu Z. Transition probabilities of emissions and rotationless radiative lifetimes of vibrational levels for the PO radical // Astrophys. J. Suppl. Ser. 2018. V. 236, N 34. P. 1–15.
- 7. Бобровников С.М., Горлов Е.В., Жарков В.И. Эффективность лазерного возбуждения РО-фотофрагментов органофосфатов // Оптика атмосф. и океана. 2022. Т. 35, № 3. С. 175–185.
- 8. Singh N.L. Rotational analysis of the β bands of phosphorus monoxide // Can. J. Phys. 1959. V. 37, N 2. P. 136–143.
- 9. Mohanty B.S., Upadhya K.N., Singh R.B., Singh N.L. On the β-band system of the PO molecule // J. Mol. Spectrosc. 1967. V. 24, N 1–4. P. 19–37.
- 10. Mohanty B.S., Rai D.K. Upadhya K.N. Structure and analysis of some bands of the β-system of PO molecule // Proc. Indian Acad. Sci. Sect. A. 1969. V. 68, N 4. P. 165–172.
- 11. Dixit M.N., Narasimham N.A. Isotope shift studies of the ultra-violet and visible bands of P¹⁶O and P¹⁸O // Proc. Indian Acad. Sci. Sect. A. 1969. V. 68, N 1. P. 1–12.
- Smyth K.C., Mallard W.G. Two-photon ionization processes of PO in a C₂H₂/air flame // J. Chem. Phys. 1982. V. 77, N 4. P. 1779–1787.
- 13. Anderson W.R., Bunte S.W., Kotlar A.J. Measurement of Franck-Condon, factors for the v'=0 progression in the B-X system of PO // Chem. Phys. Lett. 1984. V. 110, N 2. P. 145–149.
- 14. Wong K.N., Anderson W.R., Kotlar A.J., De Wilde M.A., Decker L.J. Lifetimes and quenching of B²Σ⁺ PO by atmospheric gases // J. Chem. Phys. 1986. V. 84, N 1. 81–90.
- Wong K.N., Anderson W.R., Kotlar A.J. Radiative processes following laser excitation of the A²Σ⁺ state of PO // J. Chem. Phys. 1986. V. 85, N 5. 2406–2413.
- 16. Huang M.D., Becker-Ross H., Florek S., Heitmann U., Okrussb M. Determination of phosphorus by molecular absorption of phosphorus monoxide using a high-resolution continuum source absorption spectrometer and

Оценка эффективности лазерного возбуждения перехода $B^2\Sigma^+$ (v' = 0) – $X^2\Pi$ (v'' = 0) оксида фосфора 367

an air-acetylene flame // J. Anal. At. Spectrom. 2006. V. 21, N 3. P. 338-345.

- Prajapat L., Jagoda P., Lodi L., Gorman M.N., Yurchenko S.N., Tennyson J. ExoMol molecular line lists – XXIII. Spectra of PO and PS // Mon. Not. Roy. Astron. Soc. 2017. V. 472, N 3. P. 3648–3658.
- Huber K.P., Herzberg G.H. Constants of Diatomic Molecules // NIST Chemistry WebBook. NIST Standard Reference Database Number 69, 2022. DOI: 10.18434/T40303.
- Sausa R.C., Miziolek A.W., Long S.R. State distributions, quenching, and reaction of the phosphorus monoxide radical generated in excimer laser photofragmentation of dimethyl methylphosphonate // J. Phys. Chem. 1986. V. 90, N 17. P. 3994–3998.
- 20. Бобровников С.М., Горлов Е.В., Жарков В.И. Оценка эффективности лазерного возбуждения молекул оксида фосфора // Оптика атмосф. и океана. 2021. Т. 34, № 4. С. 302–311; Bobrovnikov S.M., Gorlov E.V. Zharkov V.I. Estimation of the efficiency of laser excitation of phosphorus oxide molecules // Atmos. Ocean. Opt. 2021. V. 34, N 4. P. 302–312.
- Edlen B. The refractive index of air // Metrologia. 1966. V. 2, N 2. P. 12–80.
- 22. Бобровников С.М., Горлов Е.В. Лидарный метод обнаружения паров взрывчатых веществ в атмосфере // Оптика атмосф. и океана. 2010. Т. 23, № 12. С. 1055– 1061; Bobrovnikov S.M., Gorlov E.V. Lidar method for remote detection of vapors of explosives in the atmosphere // Atmos. Ocean Opt. 2011. V. 24, N 3. P. 235–241.

S.M. Bobrovnikov, E.V. Gorlov, V.I. Zharkov, S.N. Murashko. Estimation of the efficiency of laser excitation of the $B^2\Sigma^+$ (v' = 0) – $X^2\Pi$ (v'' = 0) transition of phosphorus oxide.

We present the results of calculating the vibrational and rotational terms of the $X^2\Pi$ and $B^2\Sigma^+$ electronic states of the phosphorus oxide (PO) molecule. The absorption spectrum corresponding to the electronic transition $B^2\Sigma^+$ (v' = 0) – $X^2\Pi$ (v'' = 0) has been calculated. The efficiency of laser excitation of PO molecules is estimated as a function of the spectral parameters of the radiation. It has been established that the excitation efficiency of the $B^2\Sigma^+$ (v' = 0) – $X^2\Pi$ (v'' = 0) electronic transition of the PO molecule is approximately an order of magnitude lower than that of the $A^2\Sigma^+$ (v' = 0) – $X^2\Pi$ (v'' = 0) transition. The result is of practical importance from the point of view of choosing the optimal scheme for laser excitation of the fluorescence of POfragments in the implementation of the method of remote detection of organophosphates.