СПЕКТРОСКОПИЯ ОКРУЖАЮЩЕЙ СРЕДЫ

УДК 539.194

Г.А. Онопенко, Е.А. Синицын, С.Н. Юрченко, В.В. Мельников, Е.С. Бехтерева, О.Н. Улеников

О некоторых проявлениях эффекта изотопозамещения в аксиально-симметричных XH₃ (C_{3v}) молекулах: XH₃ – XH₂D

Томский государственный университет

Поступила в редакцию 19.01.2001 г.

Для аксиально-симметричных XH₃ (C_{3v}) молекул рассмотрено проявление эффекта изотопозамещения при понижении симметрии молекулы.

Ранее в работах [1–4] для трехатомных молекул XH_2 симметрии C_{2v} , удовлетворяющих приближению локальных мод, и их изотопопроизводных $XHD(C_i)$, $XD_2(C_{2v})$, были получены простые изотопические соотношения, хорошо согласующиеся с результатами анализа экспериментальных колебательно-вращательных спектров молекул D_2 Se, HDSe, D_2 S и HDS. Как продолжение этих исследований данная работа посвящена анализу аналогичной проблемы для XH_3 (C_{3v}) – XH_2 D (C_8) замещения в аксиально-симметричных четырехатомных молекулах, удовлетворяющих условиям:

а) отношение атомных масс $m_{\rm H}/M_{\rm X}$ мало;

б) равновесное значение угла H - X - H близко к $\pi/2$;

в) частоты валентных колебаний примерно равны друг другу и много больше деформационных частот (т. е. параметры $f_{rr}, f_{rr'}, f_{\alpha\alpha}, f_{\alpha\beta}$ ненулевые, а $f_{r\alpha} = f_{r\beta} = 0$).

Всем этим условиям достаточно хорошо удовлетворяет молекула PH₃.

Из общих физических соображений ясно, что между параметрами различных изотопических модификаций молекулы должны существовать те или иные соотношения, так как физически они отличаются только атомными массами. Как обсуждалось в [5], математически возможность получения таких соотношений основана на том, что между константами форм колебаний $l_{N\alpha\mu}$ и $l_{N\Box\Box}$ исходной и замещенной молекул существуют точные взаимосвязи, получаемые из соотношений:

$$I'_{N\gamma\lambda} = \sum_{\alpha\mu} K^{e}_{\alpha\gamma} \left(\frac{m_{N}}{m'_{N}}\right)^{1/2} I_{N\alpha\mu} \beta_{\lambda\mu}.$$
 (1)

Индекс *N* указывает номер атома; величины $K_{\alpha\gamma}^e$ (индекс *e* показывает, что величина относится к равновесной конфигурации молекулы) являются элементами матрицы, которая определяет поворот фиксированной молекулярной координатной системы после изотопозамещения. Величины $\beta_{\lambda\mu}$ – элементы матрицы, обратной к матрице перехода $\{\alpha_{\lambda\mu}\}$ от нормальных колебательных координат исходной молекулы к нормальным координатам изотопозамещенной. Матричные элементы $\alpha_{\lambda\mu}$ определяются из формулы (более подробно см. [5]):

$$\sum_{\nu} \alpha_{\lambda\nu} \ \alpha_{\mu\nu} = A_{\lambda\mu} = \sum_{N\alpha} \left(\frac{m_N}{m'_N} \right) l_{N\alpha\lambda} \ l_{N\alpha\mu} \ . \tag{2}$$

Параметры $K^{e}_{\alpha\gamma}$ могут быть найдены из условий ортогональности изотопозамещенной молекулы

$$\sum_{\alpha} K^{e}_{\alpha\beta} K^{e}_{\alpha\gamma} = \sum_{\alpha} K^{e}_{\beta\alpha} K^{e}_{\gamma\alpha} = \delta_{\beta\gamma}$$
(3)

и уравнений

$$\sum_{\beta} J^{e}_{\alpha\beta} K^{e}_{\beta\gamma} = I^{\prime e}_{\gamma\gamma} K^{e}_{\alpha\gamma} , \qquad (4)$$

где $I_{\gamma\gamma}^{\prime e}$ – равновесные моменты инерции замещенной молекулы, а $J_{\alpha\beta}^{e}$ определяются из формул:

$$J^{e}_{\alpha\beta} = \sum_{\gamma\delta\zeta} \varepsilon_{\alpha\gamma\zeta} \ \varepsilon_{\beta\delta\zeta} \ j^{e}_{\gamma\delta} \ , \tag{5}$$

$$j_{\gamma\delta}^{e} = j_{\delta\gamma}^{e} = \sum_{N} m_{N}^{\prime} r_{N\gamma}^{e} r_{N\delta}^{e} - \frac{\sum_{K} m_{K}^{\prime} r_{K\gamma}^{e} \sum_{L} m_{L}^{\prime} r_{L\delta}^{e}}{\sum_{N} m_{N}^{\prime}} .$$
(6)

Здесь $r_{N\alpha}^{e}$ – это декартовы координаты, определяющие равновесные положения ядер относительно фиксированной в молекуле координатной системы.

Дальнейшее использование выражения (1) в обычных формулах колебательно-вращательной теории (см., например, [6–7]) позволяет получить изотопические соотношения для любых спектроскопических параметров замещенной молекулы. Следует сказать, однако, что соотношения (1) в общем случае весьма сложны для практического применения и величины в правых частях формулы (1) могут быть определены только численно. Основная причина такой ситуации заключается в том, что $l_{N\alpha\lambda}$ -коэффициенты исходной молекулы имеют сложный вид.

В то же время, как было показано в [8], константы форм колебаний $l_{N\alpha\lambda}$ исходной молекулы имеют очень простую форму (для удобства читателя они приведены в табл. 1), когда XH₃ молекула симметрии C_{3v} обладает свойствами «а»–«в» (см. с. 134).

Таблица 1

Значения *l_{Nαλs}-параметров для молекулы XY₃ в приближении локальных мод**

N	α	λ	S	$l_{N\alpha\lambda}$	N	α	λ	S	$l_{N\alpha\lambda}$
1	x	1		$\sqrt{2}/3$	1	x	2		1/3
2	x	1		$-\sqrt{2}/6$	2	x	2		-1/6
3	x	1		$-\sqrt{2}/6$	3	x	2		-1/6
1	у	1		0	1	у	2		0
2	у	1		$-1/\sqrt{6}$	2	У	2		$-1/2\sqrt{3}$
3	у	1		$1/\sqrt{6}$	3	У	2		$1/2\sqrt{3}$
1	z	1		- 1/3	1	Z	2		$\sqrt{2}/3$
2	Z	1		-1/3	2	Z	2		$\sqrt{2/3}$
3	Z	1		- 1/3	3	Z	2		$\sqrt{2}/3$
1	x	3	1	2/3	1	x	4	1	1/32
2	x	3	1	1/6	2	x	4	1	$-\sqrt{2}/3$
3	x	3	1	1/6	3	x	4	1	$-\sqrt{2/3}$
1	y	3	1	0	1	y	4	1	0
2	y	3	1	$1/2\sqrt{3}$	2	y	4	1	$1/\sqrt{6}$
3	у	3	1	$-1/2\sqrt{3}$	3	У	4	1	$-1/\sqrt{6}$
1	z	3	1	$-\sqrt{2}/3$	1	Z	4	1	1/3
2	Ζ	3	1	$1/3\sqrt{2}$	2	Z	4	1	-1/6
3	z	3	1	$1/3\sqrt{2}$	3	Z	4	1	-1/6
1	x	3	2	0	1	x	4	2	0
2	x	3	2	$1/2\sqrt{3}$	2	x	4	2	$1/\sqrt{6}$
3	x	3	2	$-1/2\sqrt{3}$	3	x	4	2	$-1/\sqrt{6}$
1	у	3	2	0	1	у	4	2	$-1/\sqrt{2}$
2	у	3	2	1/2	2	у	4	2	0
3	У	3	2	1/2	3	У	4	2	0
1	Ζ	3	2	0	1	Ζ	4	2	0
2	Z	3	2	1/√6_	2	Ζ	4	2	$-1/2\sqrt{3}$
3	Ζ	3	2	-1/√6	3	Ζ	4	2	1/2√3

* Все *l*_{4αλs}-параметры равны нулю.

В этом случае можно ожидать, что аналогичные простые соотношения могут быть выведены на основе общих соотношений (1) для изотопозамещенной молекулы.

Рассмотрим ситуацию, когда только один атом H замещен атомом D. В этом случае использование условий «а»—«в» (рис. 1) в общих формулах (2)–(6) приводит к следующим простым ненулевым значениям $K^{e}_{\alpha\gamma}$ и $K^{e}_{\lambda\mu}$ коэффициентов:

$$K_{xx}^{e} = \frac{1}{\sqrt{3}}, \ K_{xx}^{e} = -K_{zx}^{e} = \sqrt{\frac{2}{3}} \cdot K_{zz}^{e} = \frac{1}{\sqrt{3}}, \ K_{yy}^{e} = 1.$$
 (7)

$$\beta_{11} = \sqrt{\frac{2}{3}} , \beta_{21} = \sqrt{\frac{2}{3}} , \beta_{13_1} = -\frac{1}{\sqrt{3}} , \beta_{23_1} = \frac{2}{\sqrt{3}} , \beta_{53_2} = 1,$$
(8)

$$\beta_{32} = \frac{1}{\sqrt{3}} \, \, , \, \beta_{42} = \frac{2\sqrt{2}}{3} \, \, , \, \beta_{34_1} = - \, \sqrt{\frac{2}{3}} \, \, , \, \beta_{44_1} = \frac{2}{3} \, \, , \, \beta_{64_2} = \, \frac{2}{\sqrt{3}} \, \, .$$

Если теперь подставить эти результаты и значения констант форм колебаний $l_{N\alpha\lambda}$ исходной XH₃ молекулы из табл. 1 в общую формулу (1), то получим очень простые результаты для констант форм колебаний $l'_{N\alpha\lambda}$ замещенной молекулы XH₂D. Следует сказать, что соотношения (7) определяют вращение осей молекулярной системы координат от конфигурации, показанной на рис. 1, *a*, к конфигурации на рис. 1, *б*. В то же время, как уже обсуждалось в [9], для молекулы PH₂D оси координат должны быть ориентированы, как на рис. 1, *в*. Это означает, что индексы α в константах форм колебаний $l'_{N\alpha\lambda}$ в результате должны быть переобозначены в соответствии с направлением осей на рис. 1, *в*. Полученные $l'_{N\alpha\lambda}$ коэффициенты приведены в табл. 2.

Данные из табл. 2 были использованы затем для определения простых соотношений между различными величинами (такими, например, как кориолисовы постоянные $\zeta_{\lambda\mu}^{\prime\alpha}$, колебательно-вращательные параметры $a_{\lambda}^{\prime\alpha\beta}$ и другие). Ниже приведены полученные ненулевые кориолисовы постоянные $\zeta_{\lambda\mu}^{\prime\alpha}$, и колебательно-вращательные коэффициенты $a_{\lambda}^{\prime\alpha\beta}$:

$$\begin{aligned} \zeta_{14}^{x} &= -\zeta_{24}^{x} = -\zeta_{34}^{x} = \zeta_{56}^{x} = -\zeta_{16}^{z} = \zeta_{26}^{z} = -\zeta_{36}^{z} = \zeta_{45}^{z} = -1\sqrt{3}, \\ \zeta_{35}^{y} &= -1, \quad \zeta_{46}^{y} = 1/3; \\ \alpha_{1}^{xx} &= \alpha_{1}^{yy} / 2 = \alpha_{1}^{zz} = \alpha_{2}^{zz} / 2 = \\ &= -\alpha_{3}^{xx} = \alpha_{3}^{zz} = -\alpha_{5}^{zz} = -\alpha_{5}^{zx} = \sqrt{2m_{\rm H}r_{e}^{2}}, \end{aligned}$$
(10)
$$\alpha_{4}^{yz} &= \alpha_{4}^{zy} = \alpha_{6}^{xy} = \alpha_{6}^{yx} = -2\sqrt{2m_{\rm H}r_{e}^{2}} / \sqrt{3}. \end{aligned}$$

Таблица 2

Ненулевые *l_{NQA}*-параметры для молекулы XH₂D в приближении локальных мод*

Ν	α	λ	$l_{N\alpha\lambda}$	N	α	λ	$l_{N\alpha\lambda}$
2	x	1	1/2	2	У	4	$-1/\sqrt{3}$
3	x	1	-1/2	3	У	4	$-1/\sqrt{3}$
2	Z	1	-1/2	1	Z	4	$1/\sqrt{3}$
3	Z	1	-1/2	2	x	5	-1/2
1	y	2	1	3	x	5	-1/2
2	x	3	1/2	2	Ζ	5	1/2
3	x	3	-1/2	3	Ζ	5	-1/2
2	Ζ	3	1/2	1	x	6	$1/\sqrt{3}$
3	Ζ	3	1/2	2	у	6	1/√3
				3	у	6	$-1/\sqrt{3}$

* Все *l*_{4αλ}-параметры равны нулю.

В свою очередь, соотношения (9), (10) можно использовать для определения различных спектроскопических параметров. Ниже, в частности, приведены полученные результаты для изотопических соотношений между колебательно-вращательными коэффициентами ζ_{λ}^{β} , связанными с деформационными колебаниями $\lambda = 3$, 4, 5 (в этом случае для PH₂D молекулы использовалась та же модель потенциальной функции, что и для молекулы PH₃ [8]):

$$\alpha_3^{\prime x} = \alpha_3^{\prime z} = \frac{8}{9} \frac{Be^2}{\omega \theta} \quad (\theta^2 - 1), \quad \alpha_4^{\prime x} = \alpha_6^{\prime z} = \frac{4}{27\sqrt{3}} \frac{Be^2}{\omega \theta} \times \left\{ (42\theta^2 - 23) + \frac{16}{27\sqrt{3}} \left(\frac{4 + 9\theta^2}{4 - 3\theta^2} + \frac{2 + 9\theta^2}{2 - 3\theta^2} \right) \right\},$$

(11)
$$\alpha_{6}^{\prime x} = \alpha_{4}^{\prime z} = \frac{28}{9\sqrt{3}} \frac{Be^{2}}{\omega\theta} \left\{ (2\theta^{2} - 1) + \frac{16}{27\sqrt{3}} \left(\frac{4 + 9\theta^{2}}{4 - 3\theta^{2}} \right) \right\},$$
$$\alpha_{3}^{\prime y} = 4 \frac{Be^{2}}{\omega\theta} \left(\frac{3 - \theta^{2}}{1 - \theta^{2}} \right) \theta^{2}, \quad \alpha_{4}^{\prime y} = \alpha_{6}^{\prime y} = \frac{4}{3\sqrt{3}} \frac{Be^{2}}{\omega\theta} (3\theta^{2} - 4).$$

Таблица З

Некоторые спект	поскопические пя	паметны для	молекулы	PH ₂ D	. см
fickoropbic cheki	poentonin recitine na	panerphi gein	moster youb	1 11/10	

Параметр	Расчет по (11)	Эксп. [10]
$B \zeta_{43}^x$	- 1,72	-2,07
$C \zeta_{46}^x$	1,45	1,63
$A \zeta_{36}^x$	1,60	1,54
α_3^x	-0,0145	0,0005
α_3^{ν}	0,0460	0,0490
α_3^z	-0,0145	0,0080
α_4^x	0,0040	0,0028
α_4^y	- 0,0437	- 0,0392
α_4^z	-0,0085	-0,0084
α_6^x	-0,0085	-0,0089
α_6^y	- 0,0437	-0,0384
α_6^z	0,0040	0,0092
	•	

Значения колебательно-вращательных постоянных $\alpha_{\lambda}^{\prime\beta}$, полученные из соотношений (11), приведены во 2-й графе табл. 3. В 3-й графе представлены экспериментальные значения этих параметров из работы [10]. Можно видеть вполне удовлетворительное согласие рассчитанных $\alpha_{\lambda}^{\prime\beta}$ -параметров с экспериментальными данными.

Работа поддержана грантом Министерства образования Российской Федерации.

- Ulenikov O.N., Onopenko G.A., Olekhnovitch I.M., Alanko S., Horneman V.-M., Koivusaari M., and Anttila R. // J. Mol. Spectrosc. 1998. N 189. P. 74–82.
- Ulenikov O.N., Ditenberg E.A., Olekhnovitch I.M., Alanko S., Koivusaari M., and Anttila R. // J. Mol. Spectrosc. 1998. N 191. P. 239–247.
- 3. Ulenikov O.N., Onopenko G.A., Tyabaeva N.E., Burger H., and Jerzembeck W. // J. Mol. Spectrosc. 1999. N 197. P. 100–113.
- 4. Ulenikov O.N., Onopenko G.A., Tyabaeva N.E., Burger H., and Jerzembeck W. // J. Mol. Spectrosc. 1999. N 198. P. 27–39.
- 5. Быков А.Д., Макушкин Ю.С., Улеников О.Н. Изотопозамещение в многоатомных молекулах. Наука: Новосибирск, 1985.
- 6. Nielsen H.H. // Rev. Mod. Phys. 1951. N 23. P 90-135.
- 7. *Papousek D. and Aliev M.R.* // Molecular Vibrational-Rotational Spectra. Amsterdam; Oxford; New York: Elsevier, 1982.
- Ulenikov O.N., Tolchenov R.N., and Qing-shi Zhu // Spectrochim. Acta. 1997. V. A53. P. 845–853.
- 9. Ulenikov O.N., Burger H., Jerzembeck W., Onopenko G.A., Bekhtereva E.S. and Petrunina O.L. On the Ground Vibrational States of the PH₂D and PHD₂ Molecules // J. Mol. Structure. 2001 (в печати).
- Ulenikov O.N., Burger H., Jerzembeck W., Onopenko G.A., Bekhtereva E.S. and Sinitsin E.A. High Resolution Study of the Three Lowest on Energy Vibrational Bands of the PH₂D Molecule // J. Mol. Spectrosc. 2001 (в печати).

G.A. Onopenko, E.A. Sinitsyn, S.N. Yurchenko, V.V. Melnikov, E.S. Bekhtereva, O.N. Ulenikov. On some manifestations of the isotope-substitution effect in axially symmetrical $XH_3(C_{3v})$ molecules: XH_3-XH_2D .

For axially symmetrical molecules $XH_3(C_{3\nu})$, a manifestation of the isotope-substitution effect followed by decrease of the molecules' symmetry is considered.