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Based on the analysis of general integral solution of wave equation (the 

Kirchhoff integral) in Fresnel approximation, a behavior of the energy streamlines 
is considered at improper points of three-dimensional optical field, i.e. phase front 
dislocations and saddles, where the amplitude and the transverse gradient of a 
field phase vanish.  The peculiarities are revealed in the energy streamlines 
behavior that allow one to distinguish between two- and three dimensional wave 
field.  The diffraction rays method is shown to be useful in constructing the spatial 
spiral streamlines based on known intensity distribution.  

The interference patterns arising from the interference between speckle field 
and plane waves of various directions are analyzed.  It is shown, that the 
interference pattern can take form of &fractured[ twisting spiral.  The fracture 
points therewith coincide with the speckle field dislocations.  In the case of 
interference with various plane waves, the pattern essentially changes.  
Nevertheless, at the dislocation points, the direction of a tangent to the 
interference line holds constant for all patterns. 

 
For many applications of coherent optics where the 

wave front is measured or controlled (i.e., for the 
problems of object recognition, adaptive optics, etc.) it 
is important to investigate the peculiarities of the wave 
front behavior in the vicinity of dislocations of an 
optical field having speckle structure. 

As a rule, the investigations are based on the 
analysis of complex polynomials, being formally the 
wave equation solutions.  In this case the two-
dimensional polynomials of not higher than the second 
order are commonly considered.1$3  In this paper we 
consider three-dimensional polynomials.  The results 
have been obtained on the basis of analysis of the 
integral solution of the parabolic wave equation (i.e., 
in the approximation of the Fresnel diffraction). In this 
approximation the wave field can be represented as 
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where E0 is the initial wave field k0 is the wave 
number. 

Let us assume that the initial field is formed by 
waves from N independent point sources 

E0(ρ0) = 
2πi
k0

 ∑
k = 1

N

 `k e
i α

k δ(ρk $ ρ0). (2) 

 
Then the field (1) is the result of the field interference 
from N point sources and takes the form: 
 

E(z, ρ) = z$1 ∑
k = 1

N

  Ak e
iϕ

k , (3) 

 

where ϕk = k0z + αk
 + k0(ρ $ ρk)2/2z . 

Assume that at the point { z = z0 
, ρ = 0 } the 

interference field vanishes, i.e., 
 

E(z0, 0) = z 0

$1
 ∑
k = 1

N

  Ak e 
iϕ

0k  = 0 ,   (4) 

 

where ϕ0k = k0z + αk
 + k0 ρk

2
/2z0 . 

The condition (4) is fulfilled when the following 
conditions are fulfilled simultaneously: 

 

∑
k = 1

N

  Ak cos ϕ0k = 0 , 

∑
k = 1

N

  Ak  sin ϕ0k = 0 . (5) 
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Geometrically this can be represented as follows.  
One can see from Eq. (4) that the field at the 
dislocation point {z0, 0} is the sum of complex numbers 

Ek = Ak e
iϕ

0k.  If every component corresponds to a 

vector on the plane, whose length is equal to Ak, and 
the angle between the vector and the axis OX is ϕ0k, 
then the condition (4) indicates that the sum of vectors 
should be equal to zero.  Hence, when representing the 
given sum of vectors geometrically on the plane, we 
obtain a closed broken line, i.e., the top of the last-Nth 
vector coincides with the origin of the first vector. 

Thus, any N-angle polygon drawn on the plane, 
sets the relationship between Ak and ϕ0k, according to 
which the field in the plane z = z0 has the dislocation 
at the origin of coordinates, i.e., at the point ρ = 0.  
This condition is used in numerical simulation of a 
speckle-field in the cases when it is necessary to know 
beforehand a true position of a dislocation. 

From Eq. (3) we can determine the intensity and 
the Umov$Poynting vector of the speckle-field. 

For the intensity we obtain 
 

W(z, ρ) = E(z, ρ) E*(z, ρ) = z$2 ∑
k = 1

N

  Wk(z, ρ),  (6) 

 

where Wk = ∑
l = 1

N
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The transverse component of the Umov$Poynting 

vector is determined by the expression 
 

P⊥(z, ρ) = 
1
k0

 Im {E* ∇ρ E } = 

= z$3 ∑
k = 1

N

 (ρ $ ρk) Wk (z, ρ) . (7) 

 
The behavior of the intensity and the Poynting 

vector in the vicinity of dislocations can be determined 
from Eqs. (6) and (7), when ρ in these expressions 
vanishes.  Then the Taylor expansions of trigonometric 
functions are performed. 

Thus we obtain 
 

W ≅ ax x
2 + ay y

2  + 2 axy x y, 

P⊥ ≅ $ ex a y + eya x, (8) 
 
where 
 
ρ = {x, y};    ρk = {xk, yk };    a = acx asy $ asx acy ;

 

ax = acx
2  + asx

2 ; 

ay =  acy
2
 + asy

2 ;    axy = acx acy + asx asy ; 

acx = ∑
k = 1

N

  Ak xk cos ϕ0k = 0; 

asx = ∑
k = 1

N

  Ak xk sin ϕ0k = 0 ; 

acy =  ∑
k = 1

N

  Ak yk cos ϕ0k = 0 ; 

asy = 
k = 1

∑
N

 Ak  yk sin ϕ0k  = 0 . (9) 

 
From Eq. (8) it follows that at the point of 

dislocation and in its vicinity 
 

⎪P⊥⎪ ≅ a⎪ρ⎪,    rot P⊥ =  2 a. 
 
We obtain the equation of degenerate curve of the 
second order when equating the expansion (8) for 
intensity to zero.  In this case the invariant D of a 
given curve 
 

D =⏐
ax      axy

axy      ay⏐= (acx asy $ asxacy)
2  = a2 

 
can be above zero or equals zero. 

The condition D > 0 corresponds to the case when 
the intensity reduces to zero at a separate point ρ = 0.  
The condition D = 0 corresponds to the case of 
intensity vanishing on the line going through the point 
ρ = 0.  For a given case rot P⊥ = 0, since a = 0.  The 
behavior of the Poynting vector and the phase in the 
vicinity of the point, where the intensity vanishes, has 
no peculiarities, typical for the spiral dislocation.  Such 
a situation is observed, for example, at radiation 
diffraction on a circular or square hole when the 
intensity vanishes at closed lines or the lines becoming 
infinite. 

The situation, typical for spiral dislocation, is 
presented in Fig. 1.  The field of the Poynting vector in 
the plane is shown by arrows in Fig. 1 where we can 
clearly see two poles and a saddle point.  The Poynting 
vector is connected with the intensity W and the phase 
ϕ of the resulting field by the following relation: 

 

P⊥(z, ρ) = 
1
k0

 W(z, ρ) ∇ρ
 

ϕ(z, ρ) . (10) 

 
The points of the poles are determined by the 

condition W = 0.  In this case the phase is uncertain at 
the poles.  The saddle point corresponds to the 
condition ∇ρ 

ϕ = 0.  This picture is similar to that 
presented in Ref. 4, where the two-dimensional case 
was considered.  However, in the three-dimensional 
case the behavior of energy streamlines, being 
considered, is strongly different. 
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FIG. 1. The Poynting vector field on the plane perpendicular to the propagation axis (arrows) and the projection 
of spatial energy streamline on a given plane (solid line). 

 
Figure 1 shows this line projection on the plane 

perpendicular to the propagation axis.  The origin of 
this line coincides with the plane, for which in the 
figure the Poynting vector field is represented.  It is 
clear that the energy, having turned several times 
around the dislocation, escapes from it.  Then the 
energy is captured by another dislocation and the 
process is repeated. 

In this case, as the energy propagates, the 
dislocation itself shifts along the direction toward 
another dislocation (in this case, according to the 
linear law).  As the dislocation comes closer, the 
energy, turned around dislocations, decreases and 
vanishes at the instant of their confluence.  Then the 
dislocations, continuing on their way, diverge, having 
captured greater quantity of energy.  Then they meet, 
on their way, other dislocations and the process is 
repeated. 

For the two-dimensional case4 the existence of 
limiting curves (limiting cycles) for the energy 
streamlines is typical.  The limiting curves represent 
the boundaries opaque to energy, therefore the energy 
quantity, captured by the dislocation remains constant.  
This differences can be explained as follows.  The 
equation for energy stream lines for the three-
dimensional case is written as: 

 

dρ

dz
 = 

1
k0

 ∇ρ
 

ϕ(z, ρ) = P⊥(z, ρ)/W(z, ρ) (11) 

 

or 
 

dx
dz

  = Px(z, x, y)/W(z, x, y), 

dy
dz

  = Py(z, x, y)/W(z, x, y). (12) 

 

For the two-dimensional case time plays the role of 
the coordinate z (evolution variable).  In this case in 
Ref. 4 the situation is considered when in the right-
hand side of Eq. (12) the dependence is lacking on the 
evolution variable and, hence, the paths are stationary.  
In our case we consider the optical wave propagation in 
a free space and stationary solutions are impossible. 

Besides, the calculations of energy streamlines 
were performed based on the diffraction ray method,5 
which is based on the fact that the diffraction rays 
(energy streamlines) satisfy the equation6 

 

d2ρ

dz2 = 
1
2
 ∇ρ ε(z, ρ) + 

1

2k0

2 ∇ρ (A$1 Δρ
 

A(z, ρ)) , (13) 

 

where ε is the disturbance of dielectric constant, A is  
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the wave amplitude.  In free space (ε = 0) this equation 
can be written in the form (W = A2): 
 

d2ρ

d2z
  = 

1

4k0

2 ∇ρ [W
$1

 
∇ρ

2W $ 
1
2
 W

$2
(∇ρ W)

2
] . (14) 

 
The calculations, made by Eqs. (12) and (14), 

coincided within the errors of numerical calculations.  
This points, on the one hand to the applicability of the 
diffraction ray method in the given situation, and on 
the other hand, to the fact that the speckle-field 
intensity distribution contains the information on its 
vortex nature. 

Let us consider the behavior of the speckle-field 
phase.  As it was mentioned in Ref. 4, the phase sets 
the natural parametrization along the energy streamline 
since it is connected with the line length by a simple 
differential equation: 

 
dϕ = k0⏐θ⏐dl ,  (15) 
 
where ϕ is the phase, l is the line length, θ is the unit 
vector, whose direction coincides with the Poynting 
vector direction. 

From Eq. (15) in the framework of paraxial 
approximation for the phase variation along the energy 
streamline the following expression is valid: 

 

ϕ = k0⌡⌠
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 dz [1+ 

1
2
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2
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2
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The phase difference between two arbitrary points 
lying in the same plane, perpendicular to the radiation 
propagation axis, can be calculated in the form: 

 

Δϕpl = ⌡⌠
ρ1

ρ2

 
 dl⊥ ∇ρ 

ϕ(z0, ρ) = 

=  k0⌡⌠
ρ1

ρ2

 
  W

$1 [Px dlx + Py dly], (17) 

 

where dl⊥ = { dlx, dly } is the line element, 

connecting the points ρ1 and ρ2, P⊥ = {Px, Py} is the 
transverse component of the Poynting vector.  It 
should be noted that for a speckle-field this phase 
difference depends on the choice of the line 
connecting these points.  For two different lines this 
difference is π by an even number, if the lines do not 
intersect the dislocations, and the above difference is 
π by an odd number, if one of the lines intersects one 
dislocation. 

The following phase calculations have been made.  
In the plane z = z0 two points ρ01 and ρ02 were 
selected, whose phase difference calculated by the 
formula (17) along a straight line, connecting them, 

equaled zero.  The streamline paths were calculated, 
outgoing from a given points and intersecting the plane 
z = z1 at the points ρ1 and ρ2, as well as the phase 
shifts along the given lines between the planes z = z0 
and z = z1 by Eq. (16) (ϕ1 is the phase shift along the 
first line, ϕ2 $ along the second line).  The phase 
difference Δϕpl between the points ρ1 and ρ2 in the 
plane z = z1 was calculated by formula (17) along a 
straight line (which did not intersect a dislocation).  
For any pair of lines the following relationship was 
obtained: 

 
ϕ1 $ ϕ2 = Δϕpl+ 2π n    (n is an integer number). (18) 
 

As the initial point ρ01 approaches a dislocation, 
the number of rotations increases, which the energy 
streamline turns around the dislocation between fixed 
planes.  With the increase in the number of such 
rotations the number n in Eq. (18) grows.  And ρ01 
tends to the dislocation point n approaches infinity. 

Figure 2 shows the speckle-field phase distribution 
on the plane.  There are 16 dislocations of wave field in 
the presented segment of the plane.  The phase 
difference between the adjacent lines of the shading 
change is π/4.  Eight shading degrees are given in the 
figure. 

The following three figures (2b, 2“, and 2d) 
present the three interference pictures, every of which 
was obtained as a result of the speckle-field interference 
(3) with a plane wave 

 
E0(z, ρ) = A0 e i k0 z +

 ik
⊥
 ρ = A0 e i 

ϕ
0 (19) 

 
for the three different directions of the vector k⊥. 

The interference of the fields (3) and (19) gives 
the following intensity distribution in the interference 
pattern: 

 

WI(z, ρ) = A0

2
 + 2 A0 z$1 ∑

k = 1

N

 A0 cos(ϕ0 $ ϕk) + W(z, ρ),  (20) 

where W(z, ρ) is the speckle-field intensity (6).  The 
lines of color exchange of the interference pattern 
correspond to the intensity level: 
 

WI(z, ρ) = A0

2 . 
 

Thus it is seen that the interference patterns take 
the form of the &fractured[  untwisted spiral.  In this 
case the fracture points coincide with the speckle-field 
dislocation points.  From Eq. (20) it follows that 

 

∇ρ WI
⎪ρ= 0

 =  
2 A0

z
  ∑

k = 1

N

  ρk Ak  sinϕ0k ,
 

(21) 

 

i.e., the value and the direction of the intensity 
gradient in the interference pattern at the dislocation 
point do not depend on the direction of the plane wave 
propagation (i.e., on the vector k⊥) while the 
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interference pattern itself varies essentially when 
changing the plane wave direction.  This fact is  
illustrated by Figs. 2 (e and f), where the 
corresponding fragments of the interference patterns, 
given in Figs. 2c and d, are magnified.  The position 
of the speckle-field dislocation is denoted by the 
points.  When performing the given numerical 
simulations of the speckle-field interference with a 

plane wave, we have used the above-mentioned 
procedure for placing a dislocation at a given point of 
the plane.  The segment of the straight line, coming 
from the dislocation point, corresponds to the 
direction and the value of the intensity gradient of 
interference pattern at a point of the speckle-field 
dislocation.  The results of numerical simulation 
coincided with those by Eq. (21). 

 

  
 a b 

  
 c d 

  
 e f 
 
FIG. 2. The speckle-field phase distribution on the plane (a); the result of the speckle field interference  
with the plane waves of different directions (b, c, d); e and f are the magnified fragments of the interference 
patterns presented in Figs. 2 (c, d). 
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This fact enables one to determine, with a high 
accuracy, the position of dislocation of a given field on 
the plane using two (or more) interference patterns 
obtained from one speckle-field, since at superposition 
of the interference patterns the lines of color change of 
different interference patterns at dislocation points 
must touch one another. 

In this paper we used the initial field 
representation in the form (2).  From the viewpoint of 
derivation of theoretical results this approximation is 
quite exceptable.  All the results obtained in this paper 
(for example, (5), (8), (9), (20), (21), etc.) can be 
written in the general case by substituting the 
summation over the finite number of the radiation 
plane points by integration over the whole plane.  It is 
evident that such a substitution will not affect the 
conclusions, which have been drawn in the paper based 
on the above results. 

At the same time, the representation (2) is 
necessary when making numerical simulations.  Because 
even in the case when we simulate the radiation 
propagation from a continuos source we would have to 
pass from using continuos functions to the functions 
defined on a grid (given at the finite number of nodes) 
and from the integration over the surface to the 
summation over the finite number of nodes on a given 
surface. 

It should be noted also that all the basic 
regularities of the speckle-field behavior, described in 
this paper, can be followed and an example is provided 
by the interference of waves from three point sources. 
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