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MEASUREMENT OF THE TURBULENT ENERGY DISSIPATION RATE WITH 

A SCANNING DOPPLER LIDAR 

 

V.A. Banakh, Ch. Werner, F. K
..
opp, and I.N. Smalikho 

 

We propose here a technique for determining the turbulent energy dissipation 

rate from Doppler lidar data.  The technique has been used for reconstructing the 

dissipation rate profile to a height of 650 m. 
 

INTRODUCTION 

 

The known methods for determination of the 
turbulence kinetic energy dissipation rate εT in the 
atmosphere are based on the relationships, resulting 
from the fundamental laws of the turbulent energy 
transformation in the inertial interval of scales of a 
heterogeneous medium, established by 
A.N. Kolmogorov and A.M. Obukhov.  In this case 
the data on the dissipation rate can be extracted from 
the measurements of structural functions or the wind 
velocity fluctuation spectra, which are determined by 
the Kolmogorov$Obukhov œ2/3” law in the inertial 
interval.1 In the case of time structural functions or 
spectra we follow the hypothesis of œfrozen” 
turbulence.2 

Remote sensing, by Doppler lidars,3$10 has 
opened new opportunities for a detailed study of the 
atmospheric dynamic processes as compared with the 
commonly used airborne devices or devices installed 
on meteorological masts.1,2,11,12  Thus, for example, 
from the Doppler spectral width of the lidar return 
one can determine the turbulent energy dissipation 
rate at certain altitude3,4,7,10 when the longitudinal 
size of a sounded volume does not exceed the 
maximum size of the turbulent inhomogeneities in the 
inertial interval. However, in the case of a cw 
Doppler lidar the use of such a method has a 
restriction on the height of sounding because with the 
path length increase the longitudinal size of the 
volume sounded increases13 and can exceed the 
maximum size of turbulent inhomogeneities in the 
inertial interval. The use of the methods for 
determining εT from time structural functions and 

spectra measured with a Doppler lidar10 is not always 
possible due to violation of the conditions of 
applicability of the Taylor hypothesis on turbulence 
œfreezing”. 

In this paper we propose a technique for measuring 
the dissipation rate of turbulent energy with a cw 
Doppler lidar capable of making conic scanning.  In this 
case, as well as in the use of the method of determining 
the dissipation rate from the Doppler spectrum width, the 
turbulence œfreezing” hypothesis is not needed, but in 
contrast to the above method there are no any restrictions 
on the sounding altitude. 

 

 

SOUNDING GEOMETRY AND BASIC RELATIONS 

 

Figure 1 shows the sounding geometry with a 
ground-based cw Doppler lidar with conic scanning.  
The lidar is at the center of the Cartesian coordinates 
r = {z, x, y}.  The sounding beam, focused at the 
distance R from the lidar, is inclined at an angle ϕ to 
the horizontal plane and rotates about the vertical axis 
z with the angular rate ω0 forming the cone with the 
height h = Rcosϕ and the radius at its base a = Rcosϕ.  
The estimates of the radial speed VD(θ), in the 
direction of the azimuth angle θ averaged over the 
sounding volume formed by a coherent lidar in the 
vicinity of the focus, were performed from Doppler 
spectra  of  lidar  return measured in equal intervals t0.   

 

 
 

FIG. 1. Geometry of lidar with conical scanning. 
 

The speed VD is expressed by the expression9 

 

VD(θ) = ⌡⌠

0

∞

 

 
 dz′ Qs(z′) Vr(z′, θ), (1) 

 

where z′ is the distance from the lidar to an arbitrary 

point at the beam axis; Qs(z′) = {π k a2
0 [(1 $ z′/R)2 + 

+ z′2/(ka2
0)

2]}$1 is the function characterizing the spatial 
resolution; a0 is the beam radius in the plane of a 
transceiving telescope; k = 2π/λ, λ is the wavelength; Vr 
is the projection of the wind velocity vector 
V(r) = {Vz(r), Vx(r), Vy(r)} on the beam axis (radial 
velocity).  In accordance with the sounding geometry, 
the connection between Vr and V is: 
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Vr(z′, θ) = S(θ) V(z′ S(θ)) , (2) 
 

where 
S(θ) = {sinϕ, cosϕ cosθ, cosϕ sinθ} . 

We assume that the wind velocity field is 
statistically homogeneous, that is, the ensemble average 
expression 〈V(r)〉 = 〈V〉 does not depend on the 
coordinates.  Then from Eq. (1), after averaging, we 
obtain: 

 

〈VD(θ)〉 = 〈Vr(θ)〉⌡⌠

0

∞

 

 
 dz Qs(z). (3) 

 

For an acceptable spatial resolution the sounding range 

R must satisfy the condition R    <<  ka2

0 (the near zone 
of diffraction).  When fulfilling the above condition, 
the second multiplier in Eq. (3) equals unity, and the 
longitudinal size of a sounding volume  

Δz = ⌡⌠

 

∞

 

 
dz Qs(z)/Qs(R) is described by the formula9: 

 

Δz = 
λ
2
 
R2

a2
0

. (4) 

 

From Eqs. (2) and (3) we derive the sinusoidal 
dependence of the mean value of the Doppler velocity 
on the azimuthal angle θ: 

 

〈VD(θ)〉 = 〈Vr(θ)〉 = S(θ) 〈V〉 ≡ sinϕ 〈Vz〉 + 
 

+ cosϕ cosθ 〈Vx〉 + cosϕ sinθ 〈Vy〉. (5) 
 

The estimate of the mean value of the Doppler 

velocity V
∧

D(θ) from the data on VD(θi) (i = 1, 2,...,n) 

measured for one complete scan is derived using the 
fitting of VD(θi) by the method of least squares to the 
relationship: 

 

V
∧

D(θ) = S(θ) V

∧

. (6) 
 

where, at a sufficiently large n, the estimated 

components of wind velocity V

∧

 = {V
∧

z, V
∧

x, V
∧

y}  are 
described by the expression6 

 

V

∧

 = 
1
2π ⌡⌠

0

2π

 

 
 dθ VD(θ) A(θ); (7) 

 

A(θ) = 
⎩
⎨
⎧

⎭
⎬
⎫1

sinϕ ,  
2cosθ
cosϕ  ,  

2sinθ
cosϕ . 

 

Fluctuations of such an estimate V
∧

D $ 〈V
∧

D〉 are mainly 
due to the turbulent eddies, whose dimensions exceed the 
diameter of the scanning cone base, and the deviations 
from the estimate of the mean value  

V
~

D(θ) = VD(θ) $ V
∧

D(θ) are, on the contrary, due to 
smaller eddies. 

 
STRUCTURAL FUNCTION OF WIND VELOCITY 

 

The mean square of the difference in deviations  

V
∼

D(θ) measured at the angles θ1 and θ2 is 
 

D(θ1, θ2) = 〈[V
~

D(θ1) $ V
~

D(θ2)]2〉 (8) 
 
(structural function of wind velocity). After cumbersome 
rearrangements with the use of Eqs. (1)$(3) and (5)$(7) 
it can be represented as 
 

D(θ1, θ2)=(2π)$2
 

⌡⌠

  0

    2π

 

 

⌡⌠
 

 

dθ3 dθ4  

 

⌡⌠

  0

    ∞

 

 

⌡⌠ 

 
dz1 dz2 Qs(z1)Qs(z2) F{Dij(zkS(θl) $ zpS(θm))},  

  (9) 
 
where F is the linear function of the tensor components 
 
Dij(r) = 〈[V′i (r0 + r) $ V′i(r0)] [V′j (r0 + r) $ V′j (r0)]〉;  
 

V′i = Vi $ 〈Vi〉;  i, j = z, x, y;  k, p = 1, 2; 
l, m = 1, 2, 3, 4. 
 
For locally isotropic turbulence the tensor Dij can be 
expressed in terms of the longitudinal structural 
function DLL(r) as2 
 

Dij(r) = DLL(r)δij + 
r
2
 
dDLL(r)

dr
 ⎣
⎡

⎦
⎤δij $ 

rirj
r2

 ,    (10) 

 

where DLL(r) in the inertial interval of turbulence 
r   <<  LV (LV is the outer scale of turbulence) is 
described by the Kolmogorov formula 
 

DLL(r) = C ε
2/3
T  r2/3, (11) 

 
r = ⏐r⏐, δij = 1 at i = j and δij = 0 at i ≠ j, C ≈ 2 is the 
universal Kolmogorov constant, εT is the turbulent 

energy dissipation rate. 
Having substituted Eqs. (10) and (11) in Eq. (9) 

and passing to the limit at small angles  
│θ1 $ θ2│    <<  π/2, we find 

 

D(θ1 $ θ2) = C ε
2/3
T ⌡⌠

  0

    ∞

 

 

⌡⌠ 

 
 dz1 dz2 Qs(z1) Qs(z2) × 

 

×{[(z1 $ z2)2
 + (θ1 $ θ2)2

 z1 z2 cos2ϕ]1/3
  × 
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× ⎣
⎡

⎦
⎤1 + 

1
3

  

(θ1 $ θ2)2
 z1 z2 cos2ϕ

(z1 $ z2)2
 + (θ1 $ θ2)2

 z1 z2 cos2ϕ  $ 

 $ ⏐z1

 

$

 

z2⏐2/3}. (12) 

 
at Δz → 0 Eq. (12) reduces to the expression 

 

D(θ1 $ θ2) = 
4
3
 C ε

2/3
T  (⏐θ1 $ θ2⏐ Rcosϕ)

2/3
 (13) 

 
for the transverse structural function of wind velocity.2  
From that it follows that the formula (12) can be used 
only on condition that the sector arc length in the 
scanning cone base ⏐θ1 $ θ2⏐Rcosϕ does not exceed the 
size of the inertial interval, i.e. 
 
⏐θ1 $ θ2⏐ Rcosϕ   <<  LV. (14) 
 
It should be noted that at small longitudinal 
dimensions of the sounding volume Δz the situation 
may occur when the radial velocity averaging over time 
t0 should be taken into account.  However, in the 
experiments made by the authors, the condition  
Δz >   > ω0 t0 R cosϕ can be realized and therefore this 
averaging will be neglected. 

Thus, from the results of measurements of 
structural function D(θ1 $ θ2) one can estimate, by 
formula (12), the value of the turbulent energy 
dissipation rate εT.  In this case the only limitation is 

the condition (14). 
 

EXPERIMENT 

 

The procedure of the Doppler lidar measurements 
of the altitude profile εT(h) at conical scanning is as 

follows.  After focusing the beam at the distance R and 
at the angle of elevation ϕ, the conical scanning by a 
laser beam is performed (see Fig. 1), during which the 
Doppler spectra of laser returns are measured every 
50 ms.  The time of one scan is 7 s.  Similar 
measurements at different R and ϕ yield the data 
arrays, related to the corresponding altitudes 
h = R sinϕ.  For averaging over the ensemble of square 

difference V
~

D(θ1) $ V
~

D(θ2) aimed at estimating the 
structure function D(θ1, θ2), the repeated scannings are 
needed for every altitude.  Such repetitions were 
performed both at continuous scaning and after each 
measurement cycle at all altitudes h. 

From the data of a single scan the values VD(θj) 
were determined.  Based on the above values and using 
the method of least squares we estimate the mean  

values of the Doppler velocity V
∧

D(θj) and after 

determining the differences VD(θj) $ V
∧

D(θj) by 
formula (8) the structure function D(θ1,θ2) was 
calculated for small angles │θ1 $ θ2│.  From such 
functions using the formula (12) we determined the 

values of the turbulent energy dissipation rate for every 
altitude. 

Figure 2 presents an example of the estimates of 

VD(θ) [by dots], V
~

D(θ) [dashed line] and the 

difference V
~

D(θ) = VD(θj) $ V
∧

D(θj) [two solid curves 
in the ranges of positive and negative values of VD(θj)] 
from the experimental data obtained at one scan.  In 
that and another ranges there are 60 points with almost 
equal angular distances between the points Δθ = 2.7°. 

 

FIG. 2. Dependence of VD (dots), V
∧

D (dashed curve) 

and V
~

D (solid curves) on the azimuthal angle θ. 
 

The estimates of VD(θj) are accurate to the errors 
Vn(θj) due to noise; the mean value of the errors being 
equal to zero.  They correlate neither with the radial 
velocity Vr(z′, θj) nor with each other 
(〈Vn(θj)Vn(θi)〉 = 0 at i ≠ j).  Therefore, the measured 
structure function D(θ1, θ2) contains, along with the 
information component (12), an additive contribution 

2σ2

n, where σ2

n = 〈V2

n〉 is the variance of the noise 
component of the estimated velocity.  However, as the 
experiments have shown, at very large signal-to-noise 
ratio this contribution can be neglected. 

From the data obtained using N full scans, for the 

angular interval of 180° we have 2N successions V
~

D(jΔθ).  
Using all points of every such a succession, one can 
obtain 2N estimates of the structure function at ⏐θ1 $
 θ2⏐    <<  180°, and then they can be averaged at the 
corresponding decrements of the angles ⏐θ1 $ θ2⏐.  The 

values εT and σ2

n are estimated by the formulas 

εT=

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤1

(n $ 1)
 ∑

k=1

n$1
 

 

1
(n $ k)

 ∑
j=1

n$k

 

 [D((j+k)Δθ)$D(jΔθ)]
[G((j+k)Δθ)$G(jΔθ)]

3/2

;  

  (15) 

σ
2
n = 

1
2n

 ∑
j=1

n

 [D(jΔθ) $ ε
2/3
T  G(jΔθ)], (16) 
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where D(jΔθ) are the experimental values of the 

structure function; G(jΔθ) is the factor at ε2/3
T  in the 

right-hand side of the formula (12).  According to the 
requirement of the theory applicability, nΔθ    <<  π/2 
and nΔθRcosϕ    <<  LV, in our experiment the number 
n = 10. 

 
RESULTS OF THE EXPERIMENT 

 

The experiment performed using a CO2 Doppler 
lidar (Institute of Optoelectronics of German Aerospace 
Agency) was carried out in a narrow alpine valley not 
far from Garmisch$Partenkirchen (FRG).  The valley 
width is about 1 km or 1.5 km.  When performing 
measurements on October 12, 1993, we observed sharp 
changes in the dynamic state of the atmosphere over 
measurement site.  In particular, at 14:00 PM a fast 
change of wind direction to an opposite one took place.  
Then during one hour we observed a relatively 
stationary state of a strongly turbulent air flow.  In 
this case the wind velocity at altitudes h ≥ 150 m 
exceeded 10 m/s and was 14$15 m/s.  During that 
hour we made six measurements at altitudes h = 50 m 
(R = 100 m, ϕ = 30°); h = 150 m (R = 300 m, 
ϕ = 30°); h = 250 m (R = 500 m, ϕ = 30°); h = 350 m 
(R = 700 m, ϕ = 30°); h = 450 m (R = 636 m, 
ϕ = 45°); h = 550 m (R = 778 m, ϕ = 45°); h = 650 m 
(R = 919 m, ϕ = 45°) to which the following 
longitudinal dimensions of a sounded volume 
corresponded Δz = 9.2; 83; 230; 450; 372; 557; and 
777 m. In every such measurement at h = 50 m we 
made three scannings, at h = 150 m two scannings 
were carried out and one scaning was performed at 
other altitudes. 

The measurement data are presented in Fig. 3 and 
Fig. 4 by dots, namely, the experimental values of the 
structure function D(jΔθ) at h = 50 m (Δz = 9.2 m) 
and h = 550 m (Δz = 557 m), respectively.  Relative 
errors of these estimates of the structure functions were 
9% and 13% respectively.  Bars in the figure show the 
90% confidence intervals. Having used Eqs. (15) and 
(16) and these experimental data we have the estimates 

εT = 0.039 m2/s3; σ2
n = 0.04 ì2/“2 for h = 50 m and 

εT = 0.012 m2/s3, σ2
n = 0,09 m2/s2 for h = 550 m σ2

n

 = 0.09 m2/s2 for h = 550 m.  Figures 3 and 4 present 
the results of the calculation by the formula (12) with 

regard for the noise component 2σ2

n.  From the figures 
we notice that the experimental and theoretical 
dependences of the structural function on the azimuthal 
angle are in agreement.  The same good agreement of 
the theory and the experiment is observed for the other 
altitudes of sounding.  The results of calculation by the 
formula (13) for the structural function in the case of 
point measurements are given in Figs. 3 and 4 as 
dashed lines.  A comparison of dashed lines with solid 
curves shows the degree of the influence of spatial 
averaging along a beam axis on the characteristics being 
considered. 

 

 
 

FIG. 3.  Structure function of wind velocity measured 
with the scanning Doppler lidar at h = 50 m and 
Δz = 9.2 m.  Dots denote the experiment, solid curve is 
for the theory, and dashed curve is for calculation by 
the formula (13). 
 

 
 

FIG. 4.  Structure function of wind velocity measured 
with the scanning Doppler lidar at h = 550 m and 
Δz = 557 m.  Dots show the experimental data, the 
theory is presented by solid curve, the calculations by 
the formula (13) are shown by dashed curve. 

 
Figure 5 shows the profile of the turbulent energy 

dissipation rate reconstructed from the data of the 
scanning Doppler lidar. It is evident that, on the 
whole, the turbulent energy dissipation rate decreases 
with altitude what qualitatively agrees with the known 
theoretical14 and experimental1 results. It is probable 
that œthe inversion” observed in this case at altitudes 
h = 250 m and h = 550 m is due to the statistical errors 
because of incomplete averaging of the structure 
function fluctuations estimated. On the average, 
relative error of estimates of the structure functions is 
about 13%. Taking into account the fact that the 
estimate of the dissipation rate is proportional to 
D3/2(θ), its relative error is 20%. Relatively large 
absolute values of εT value, in our opinion, are due to 
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the complex relief of the mountain valley and specific 
properties of weather conditions during the experiment.  
It should be noted that starting from h = 250 m and 
higher the longitudinal dimension of a volume Δz sounded 
greatly exceeds the maximum size of turbulent 
inhomogeneities in the inertial interval and becomes 
comparable and even larger than the outer scale of 
turbulence, LV.  In contrast to the method of determining 
εT from the Doppler spectrum width, where the condition 
Δz    <<  LV is required, in the approach proposed it is 
sufficient to impose a weaker inequality (14). 

 

 
 

FIG. 5.  The reconstructed profile of the turbulent 
energy dissipation rate. 

 
CONCLUSION 

 
This paper presents the results of theoretical and 

experimental investigations of the wind velocity 
structure function, measured with a cw Doppler lidar 
at conic scanning. It has been shown that due to an 
essential spatial averaging of the wind velocity 
fluctuations over the volume sounded a considerable 
slowing down of the structure function increase is 
observed with the growth of spatial separation 
(azimuthal angle) of the observation points as 
compared with the case of point measurements of the 
structure function when the œ2/3” Kolmogorov-
Obukhov law holds. The theoretical and experimental 
results obtained are in a good agreement. Based on 
the obtained relationships for the spatial structure 
function of wind velocity measured with the scanning 
lidar, the method is proposed for determining the 
 

turbulent energy dissipation rate from the Doppler 
lidar data.  Using this method, the dissipation rate 
profile has been reconstructed up to the height 
h = 650 m. The proposed method is free from the 
limitations on the value of the longitudinal size of 
the volume sounded characteristic of the known 
methods what essentially extends the applicability 
range of Doppler lidars to investigating the 
turbulence in the atmospheric boundary layer. 
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