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We show in this paper that the generalized optical transfer function (OTF) 
of the turbulent atmosphere and receiving system, corresponding to the laws of 
linear filtration, can be constructed for the case of diffuse object illumination with 
incoherent optical radiation along a correlated path.  At diffuse object illumination 
with a coherent radiation along a correlated path, one fails to construct an OTF 
meeting the principles of linear filtration.  It has been established that when 
transceiving apertures of a coherent source and a telescope are matched, the 
account for the correlation between the wave illuminating the object and that 
reflected from it improves the quality of short-exposure image. 

 

A number of papers have been recently published 
that analyze images of objects observed in coherent 
light through random media.1$5  In this connection, it 
is interesting to study the peculiarities in formation of 
coherent optical images when the wave illuminating the 
object and that reflecting from it come through the 
same inhomogeneities of a medium and the effect of 
backscattering amplification takes place.  In this paper 
we analyze the optical transfer function of the 
turbulent atmosphere in the case of monostatic scheme 
of illumination of an object observed at different degree 
of coherence of the optical radiation of  illumination 
under conditions of strong intensity fluctuations.  
Peculiarities in formation of an image of a coherently 
illuminated object in the short-exposure mode are 
considered. 

 
OPTICAL TRANSFER FUNCTION  

OF THE TURBULENT ATMOSPHERE  

AT A SOUNDING PATH 

 

Let us consider, as is shown in Fig. 1, an object, 
whose amplitude reflection coefficient is described by 
the function O(ρ′, r).  Here, ρ′ and r are two-
dimensional vectors.  The object is illuminated with an 
optical source, the distribution of field over the plane 
of emitting aperture is described the function U0(t).  
The source is at the distance L from an object. 

The mean intensity 〈It(l, ρ″)〉 in the plane l behind 
the telescope receiving lens equals6 to 
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where Grec(x, x0; ρ, t) and Gobj(x0, x; ρ, r) are the 
Green’s functions along the paths from source to object 
and back from object to telescope, respectively; Ft is 
the focal length of the telescope receiving lens; k = 2π/λ 
is the wave number; x0 determines the position of the 
plane of the optical source and the telescope; x 
determines the position of the object plane. 
 

 
 

FIG. 1.  Geometry of the image formation. 
 

It is known6 that under strong intensity 
fluctuations the following expression is valid: 
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〈Grec(x, x0; ρ1′, t1) Grec* (x, x0; ρ2′, t2) Gobj(x0, x; ρ1, r1) Gobj* (x0, x; ρ2, r2)〉 =  

 

= 〈Grec(x, x0; ρ1′, t1) Grec* (x, x0; ρ2′, t2) Grec(x, x0; r1, ρ1) Grec* (x, x0; r2, ρ2)〉 =  
 

= 〈Grec(x, x0; ρ1′, t1)Grec* (x, x0; ρ2′, t2)〉 〈Grec(x, x0; r1, ρ1) Grec* (x, x0; r2, ρ2)〉 + 
 

 + 〈Grec(x, x0; ρ1′, t1)Grec* (x, x0; r2, ρ2)〉 〈Grec* (x, x0; ρ2′, t2)Grec(x, x0; r1, ρ1)〉.  (2) 
 

The first term in the expression (2) describes the 
influence of a medium on optical wave propagation, 
when the wave illuminating the object and that 
reflected from it come through different medium 
inhomogeneities, i.e. they are uncorrelated.  The second 
term in Eq. (2) is responsible for correlation of these 
waves. 

It can be shown that6: 
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  (3) 
where  

N(ρ) = 2⌡⌠ 

 

d2κΦ
ε
(κ)[1 $ exp(iκρ)];  

Φ
ε
(κ) is the spectrum of turbulence. 

Let us consider the peculiarities in formation of 
the image of an object with diffusely scattering surface, 
the reflection coefficient of which is described by the 
following expression6 
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′, r1) O*(ρ2

′, r2)〉 =  
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4π
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where δ(ρ) is the Dirac delta function. 
For the uncorrelated paths, when the first term 

remains in Eq. (2), and for incoherent illumination 
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4π
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the distribution of the mean intensity of the object’s 

image in the plane of sharp image ⎝
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as follows: 
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where ρ̂″ = −ρ″, Iinc = 
⌡
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One can see from Eq. (4) that the mean intensity 
of the object’s image is expressed as a convolution 
integral of the object intensity and the function 

 

f ⎝
⎛

⎠
⎞ r − 

L
l
ρ̂″  =  

⌡
⌠

 

 
d2ρ1,2 T(ρ1) T(ρ2) H(x, 0; 0, ρ1− ρ2) × 

 

× exp ⎣
⎡

⎦
⎤− 

ik
L

 (ρ1− ρ2)⎝
⎛

⎠
⎞r − 

L
l
ρ̂″  , (5) 

 

that has a meaning of the averaged point-spread 
function of the turbulent atmosphere and an optical 
system.  It follows therefrom, according to the 
convolution theorem, that the spatial spectrum of the 
object’s image is the product of the object spatial 
spectrum and the Fourier transform of the point-spread 
function of the turbulent atmosphere and the optical 
system (5).7 

Really, having taken Fourier transforms of both 
sides of the expression (4) and after simple 
transformations, we obtain 
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 ω   are the optical transfer functions of 

the optical system and the turbulent atmosphere,7 
respectively.  The point-spread function (5) is spatially 
invariant and only depends on the difference in 
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coordinates r and ρ", hence the incoherent image of the 
diffuse object is isoplanatic. 

When illuminating the object with a coherent 
light 
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where a and F are respectively the radius and the 
distance, at which the optical beam is focused, in the 

plane of sharp image 1 + 
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 = 0 we have the 

following expression for the mean intensity distribution 
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By applying the Fourier transform, we obtain 
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is the spatial spectrum of the illuminated part of the 
object.  Comparing the expressions (6) and (8), we 
find that, in the case of coherent illumination, the 
image of the illuminated part of the diffuse object 
proves to be isoplanatic.8  At Ω → ∞ (mode of infinite 
plane wave), the expressions (6) and (8) coincide 
accurate to a constant value. 

Thus, in the case of incoherent illumination along 
an uncorrelated path the isoplanatic image of the whole 
object is formed while at a coherent illumination only 
of its illuminated part.   

Taking into account the correlation between the 
counter directed waves at incoherent illumination, the 
expression for mean intensity of the image of the 

diffuse object in the plane 1 + 

L
l

 $ 

L
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 = 0 comprises two 

terms; one of them is determined by Eq. (4) whereas 
the second one is 
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For the spectral region we obtain 
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where 
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By analogy with Eqs. (4)$(6) we can consider the 
function Φ(ω) as a joint optical transfer function of the 
turbulent atmosphere and the optical system, caused by 
the correlation of the counter waves.  In this case it is 
impossible to separate the contributions from the 
medium and the optical system. 

According to the convolution theorem, it follows 
from Eq. (10) that 
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From that it follows that 
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Thus, when illuminating a diffuse object with 
incoherent light through a correlated path, then the 
spatial spectrum of its image can be represented as a 
product of the object spectrum and the generalized 
optical transfer function of the following form 
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For the case when the diffuse object is illuminated 
with coherent light through a correlated path, our 
attempt to present the spatial spectrum of its image as 
a product of the spatial spectrum of the object’s 
illuminated part and the generalized optical transfer 
function failed. 

 

SHORT EXPOSURE IMAGE OF A COHERENTLY 

ILLUMINATED OBJECT 
 

It is well known that the image of an object 
observed through the turbulent atmosphere is blurred 
due to diffraction on small-scale inhomogeneities of a 
medium and is shifted as a whole due to random 
refraction on large-scale inhomogeneities.  There are 
two modes of image formation: long-exposure and 
short-exposure.  In the first case the object’s image is 
distorted due to both random diffraction and random 
refraction.  In the second mode the image is distorted 
mainly due to diffraction on random inhomogeneities of 
a medium.  The presence of an additional distorting 
factor namely, random shifts of the image as a whole, 
results in deterioration of the quality of long-exposure 
images as compared to short-exposure ones. 

Different approaches to description of short-
exposure images are known. Their main idea is to 
exclude distorting factors due to random shifts of the 
image as a whole from the general expressions for long-
exposure images.  Fried9 was first who proposed to do 
this by correcting the tilted components of a wave 
front.  In Refs. 10 and 11 the same task is achieved by 
using a moving coordinate system in the image plane. 
This system is related to instantaneous centroid of the 
image.  Last and Tur12 solved this problem using 
filtration of large-scale inhomogeneities of a medium in 
comparison with the telescope aperture.  Note that in 
Refs. 9$12 short-exposure images were considered 
within the scope of the theory of incoherent images on 
the basis of the optical transfer function. 

Let us assume12 that short-exposure images are 
distorted due to spatial inhomogeneities whose size does 
not exceed the size of the telescope receiving lens.  
That means that the effective spectrum of turbulence in 
this case can be written as 

 

Φε(κ) = A0Cε

2κ$11/3 [ ]1−exp(−αat

2κ2)  exp(κ2/κm

2) .  

  (11) 
 

In this expression C2

ε
 is the structure constant of 

the medium dielectric constant fluctuations; α is the 

constant; κ$1
m  ~ l0; l0 is the inner scale of turbulence; 

A0 = 0.033; at is the effective radius of the receiving 
lens of the telescope, whose amplitude transmission 
coefficient we approximate with the Gaussian function.  
The presentation of the turbulence spectrum in the form 
(11) is analogous to introduction of the effective outer 
scale of turbulence comparable with the radius of the 
telescope receiving lens.  Detailed analysis of the outer 
scale of turbulence influence on the statistical 
characteristics of the image can be found in Ref. 13. 

Taking into account Eq. (11) we have for the 
function N(ρ) at ρκm >   > 1: 
 

N (ρ) = 2A0Cε

2π 
6
5
 Γ(1/6) × 
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⎨
⎪⎧

⎭⎪
⎬
⎪⎫

Γ$1(11/6)2$5/3ρ5/3 − 
5
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ρ2κ m

1/3

4(1 + αat

2 κm

2)1/6  , (12) 

 

where Γ(γ) is the gamma-function.  Assuming that 
at → ∞ in Eq. (12), we find that in the case of long-
exposure image only the first term remains in braces in 
Eq. (12) for the function N(ρ). 

Thus, the expression for the short-exposure image 
can be derived from Eq. (1) with regard for Eq. (2) if 
in the expressions of the type (3) the function N(ρ) is 
used in the form (12). 

One can see from Eq. (12) that the spatial 
spectrum of mean intensity of the image can be 
presented in the form 

 
S(l,ω) = S1(l,ω) + S2(l,ω). (13) 
 
Then for a point object, for which 
 

O(ρ, r) = 
4π
k2 δ (ρ) δ (ρ − r) , 

 

we have 
 

S1(l, ω) = const (g2 + 2p1 − 2p2)$1 × 
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⎣
⎡

⎦
⎤
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2(1 + Ωt

2Q2
 + 2p1Ωt /Ω − 2p2Ωt / Ω)  , (14) 

S2(l, ω) = const.A.Bexp 
⎝
⎛

⎠
⎞−C 

ω2

ω0
2  . (15) 

 

In Eqs. (14) and (15) we introduced the following 
designations: ω0=2atk/l, g2=1+Ω2(1−L/F)2, 

Q = 1 + L(1/l $ 1/Ft), p1 = 2γ6/5
1 Ω β12/5

0 ,  

p2 = 2θγ2κ1/3
m a1/3Ω6/5β2

0/(1 + αa2
tκ

2
m)1/6,  

A = [b2
1+ Ω2(1 − L/F)2]$1, 

B = b2 − Ωt[1 −A Ω2(1 − L/F)2] × (p1 − p2)2/(Ωb1), 
C = b2 − AΩtb1(p1 − p2)2/Ω + 

+ Ω2
t [Q−A(1 − L/F)2(p1 $ p2)2]/B, b1 = 1 + p1 − p2, 

b2 = 1 + Ωt(p1 − p2)/Ω, γ1 = 0.442, γ2 = 0.244, 

Ω = ka2/L and Ωt = ka2
t/L are the Fresnel numbers of 

the emitting aperture and the telescope, respectively; 

β0
2 = 0.31 C

ε

2 k7/6L11/6 is the parameter characterizing 

the turbulent conditions of propagation along the path 
and in the case of strong fluctuations under consideration 

it takes the values β2
0   >>  1.  The parameter θ equals zero 

at short exposure and unity at long exposure.  The 
analysis of coherent images in the long-exposure mode 
(θ = 0) was performed earlier in Ref. 14. 

Let us estimate the enhancement in the image 
quality when using short-exposure images instead of long-
exposure ones. Using Eqs. (14) and (15) we calculate 
the functional of the image quality15 
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θ(l) = 
⌡⌠

 

 

d2ωω2 ⏐ N(l,ω) ⏐2

⌡⌠
 

 

d2ω ⏐ N(l,ω) ⏐2
 ,  

where N(l, ω) is the normalized spatial spectrum of the 
mean intensity of an optical wave in the plane l behind 
the telescope receiving lens: 
 

N(l, ω) = S(l,ω)/S(l, 0), 
 

S(l, ω) = 
⌡⌠

 

 

d2ρ″ 〈I(l, ρ″) 〉 exp (iωρ″)  is the spatial 

spectrum of the mean intensity.  Let us introduce the 
ratio M = θshort(l)/θlong(l) of the image quality 
functional at a short exposure θshort to that at a long 
exposure without correlation of counter waves θlong(l) 
as a measure of quality of a short-exposure image. 

Figure 2 shows M as a function of the Fresnel 
number of the coherent source illuminating the point 
object at different values of the Fresnel number of the 

telescope receiving lens.  The parameter β2
0 equals 49. 

First it is seen from the figure that, in both exposure 
modes (we analyzed the parameter M in the long-
exposure mode in Ref. 14) the correlation between 
counter waves leads to the enhancement of the point 
object image quality at matched transceiving apertures 
(Ω = Ωt) and has no influence on the image quality when 
apertures are not matched (Ω   <<  Ωt or Ω   >>  Ωt).  
Secondly the increase in the image quality when going 
from the long-exposure mode to the short-exposure one (if 
both the first and second terms are considered in the 
spatial spectrum of the mean intensity of the image) is 
greater than in the case when only the first term is 
considered in the spatial spectrum. 

 

 
FIG. 2.  The parameter M = Qshort(l)/Qlong(l) for the 
point object versus the Fresnel number of the coherent 
source, β2

0 = 49: long exposure (curves 1 and 2), short 
exposure (curves 1′ and 2′), Ωt = 0.1 (1 and 1′), 
Ωt = 10 (2 and 2′). 

Let us consider how the effect of backscattering 
amplification manifests itself in the image of a  two-
point object.  Let us write the reflection coefficient in 
the form 

 

O(ρ, r) = 
2π
k2 [δ(r - r0) + δ(r + r0)] δ(ρ − r), (16) 

 

where 2r0 is the distance between the two point 
objects.  Using Eqs. (1)$(3), (11), (12), and (16), the 
expression for the mean intensity distribution in the 
image of such an object can be readily derived. 

The mean intensity distribution in the image of 
two-point objects calculated at different Fresnel 
numbers of the emitting and receiving apertures is 
shown in Figs. 3 and 4.  The x axis shows the distance 
in the plane normal to the telescope optical axis, 
normalized to l/kat. 

 

 
 

 
FIG. 3.  Intensity distribution in the image of a two-
point object at r0/ρn = 150, Ω = Ωt = 1, β2

0 = 49: long 
exposure (a), short exposure (b). 



848   Atmos. Oceanic Opt.  /October  1996/  Vol. 9,  No. 10 V.A. Banakh and B.N. Chen 
 

 
 

 
 

FIG. 4.  Intensity distribution in the image of a two-
point object at r0/ρn = 150, Ω = Ωt = 10, β2

0 = 49:  
long exposure (a), short exposure (b). 

 
One can see from the figures that the transition 

from the long exposures to the short ones, as one would 
expect, results in higher resolution in the image of a 
two-point object (depth of the dip in Figs. 3 and 4 
increases).  The account for correlation between the 
counter waves gives an additional peak located strictly 
at the optical axis of the telescope.  This fact can be 
used for a fine target indication and object tracking.16  
In contrast to the long-exposure mode, in the case of 
short exposure the peak amplitude decreases fast 
depending on the Fresnel number of transceiving 
apertures.  Thus, if at Ω = Ωt = 1 the peak amplitude is 
maximum in both exposure modes, then at Ω = Ωt = 10 
 

the peak amplitude is practically zero in the short-
exposure mode and comparable with the magnitude of 
the mean intensity of the point object image in the 
long-exposure mode. 

The peak width is proportional to L/kat, while 
the width of the point object image is determined by 
diffraction on the receiving aperture of the telescope 
with turbulent broadening and proportional14 to 

ν ~ (L/kat)(1 + Ω2
t + 2p1Ωt/Ω)1/2.  From the 

comparison of the effective widths of the peak and the 
image of the point object, the parameter β2

0 can be 
determined that characterizes the turbulent conditions 
of propagation along the path. 
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