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We propose, in this paper, a theoretical model of a gas discharge induced by 
laser radiation.  The processes in such a system are self-consistent and strongly 
depend on boundary conditions.  This system possesses a point of bifurcation Rc , 
Rc = ν/k2

c D, where ν is the power injection rate, D is the thermal diffusion 
coefficient, kc is the system wave number.  At R > Rc various self-organization 
phenomena (for example, vortices) occur in the discharge plasma.  As a result, the 
formation of a spatiotemporal autowave with a functional structure (induced by an 
acoustic wave) at a macroscopic level is possible. 

 
1. The light-induced discharge in the Earth's 

atmosphere, sustained by the neodymium laser 
radiation, has been the subject of many investigations 
and used for scientific and technical purposes.1,2  The 
discharge of this type was first obtained by Bunkin et 
al.3  Further studies have shown that the power needed 
for sustaining the discharge is Pc ≈ 1 MW and 
practically it does not depend on the beam radius.  If 
the power exceeds the critical Pc, the discharge front 
moves along a light channel at a rate v0 ~ 10 m/s.  In 
this case the front profile remains constant and the 
value of the rate slowly increases according the law: 

v0 ~ P/Pc $ 1.  The discharge plasma is optically thin 
(the absorption coefficient μ ~ 10$2 cm$1), and its 
parameters are on the average constant in time and 
homogeneous (within the limits of a light beam) in 
space.  The average density of electrons (ions) in 
plasma is about 2⋅1017 cm$3, the average temperature is 
about 1 eV, the state of plasma is close to local 
thermodynamic equilibrium (LTE). 

In Refs. 4 and 5 we have studied the discharge 
characteristics due to its nonequilibrium state.  The 
measurements carried out enabled us to determine the 
character of macroscopic fluctuations; we have also 
discovered that the discharge is the source of intense 
acoustic waves with the frequency of the order of 
10 kHz.  The first theoretical model of the discharge 
was proposed by Raizer.1  Within the limits of this 
model, described by a one-dimensional nonlinear 
equation of thermal conductivity, he has obtained a 
correct dependence of the front travel rate on the 
radiation intensity. 

In the present paper when constructing the model 
we proceed from the gas dynamics equations where 
nonhydrodynamic mechanisms of energy transfer, 
namely, thermal conductivity and radiation are taken 
into account.  Neglecting the light beam divergence and 
taking into account the plasma optical transparency, 
the discharge channel can be considered to have 

cylindrical symmetry with the characteristic transverse 
radius r0. 

2. Consider the plasma cylindrical flux with  
the density ρ, described by hydrodynamics equations 
for the radial vr and longitudinal vz components of  
the rate v.  In the corresponding coordinates,  
assuming that the perturbed values follow the law  
exp(iωt $ ikz), where ω is the real frequency, k is the 
wave number, z is the longitudinal coordinate, the 
equations of motion and continuity take the form: 

 
iρ (ω $ k v0) = $ ∂p′/∂r; 
 

ρ (ω $ k v0) = $ kp′;  (1) 
 

ikr vr = ∂(r vr)/∂r. 
 

Here v0 is the constant velocity of motion in z-
direction; p′ is the pressure in the wave.  From Eqs. (1) 
it follows that 
 
p′ = C I0(kr) exp(iωt $ ikz), (2) 
 

where C is the constant; I0(kr) is the modified Bessel 
function.  Equations (1) are to be supplemented with 
the corresponding boundary conditions.  The first one 
follows from the fact that the time derivatives of 
coordinates of the surface points are to be equal to the 
velocities of these points.  In this case the rate of the 
discharge front travel is constant, being equal to v0 on 
the discharge axis.  Hence, we have 
 
vr = i (ω $ k v0)r′;   vz = v0⏐z = z0,   r = 0.  (3) 
 

Here z0 = v0t is the front coordinate.  Under the effect 
of perturbations, the discharge boundary will be curved 
that results in a supplementary pressure due to the 
surface tension.6  The equation for variable pressure at 
the boundary p′ = α(k2 $ r$2)r′, where α is the 
coefficient of the surface tension, is the second 
boundary condition for the set of equations (1).  Using  
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these conditions and the first of Eqs. (1), we have 

p′ = (α/ρr2)(k2
 r2 $ 1/ω $ k v0)∂p′/∂r.  Substituting 

the solution (2) to the above expression we arrive at 
the dispersion relationship: 

 

(ω $ k v0)
2
 = (α/ρr3) kr (k2

 r2 $ 1) I1(kr)/I0(kr). (4) 
 

Perturbations in plasma move together with the 
discharge, therefore, assuming k = k0 + iq, k0 = ω/v0, 
q/k0 <<  1, from Eq. (4) we find the condition of 
convective instability, described by the function 

 

q = 
1

r0 v0
 ⎣
⎡

⎦
⎤α

ρr0
 kr (1 $ k2 r2) 

I1(kr) 
I0(kr) 

1/2

. (5) 

 

Then by applying Eqs. (3) and (5) to equations (1) we 
determine the constant C = ρqv0/ik in solving Eq. (2).  
This value of the constant enables us to write the final 
expressions for hydrodynamic fields in the discharge 
plasma 
 

vz = v0 I0(kr) cos(ωt $ kz); 
 

vr = v0 I1(kr) sin(ωt $ kz);  (6) 
 

p′ = (q/k) ρ v2
0 I0(kr) sin(ωt $ kz). 

 

3. Now we show that in the open dissipative 
system, which is the case with the plasma discharge 
sustained by laser radiation, the processes of self-
organization are possible, which determine the fine 
space$time structure of waves in plasma and, finally, 
the character of the discharge motion and sound 
emission.  For this purpose the equation is introduced, 
describing the variation of entropy s in the system (in a 
unit volume V). 

 

ρ T(ds/dt) = div(i ∇T) + μw $ Φ, (7) 
 

where w is the laser radiation intensity; i is the 
coefficient of thermal conductivity; Φ is the power loss 
due to self-radiation and heat diffusion in radial 
direction.  From Eq. (7) it follows that the standard 
state of the system (close to LTE physically) is 
described by the nonlinear equation 

 

F(T) = μ(T) w $ Φ(T) = 0⏐T = T0. (8) 
 

Deviation of temperature T′ in a wave from its 
standard value T0 will give rise to the variation of 
entropy s of the system.6  Since these deviations are 
small, then, varying Eq. (7) by changing T′ in the 
vicinity of T0 ( F/ Š (Š = Š0) = bμw/Š0) we obtain 

 

∂
∂t ⌡
⌠ 

 
s dV = 

 

= ⌡
⌠ 

 ⎣
⎡

⎦
⎤i

T2
0
 (∇T′)2 + B 

μ w

T2
0

 T′ $ B 
μ w

T3
0

 T′2  dV. (9) 

 

We are interested in the values average in  
time and over the discharge cross section.  Using in 

Eq. (9) the last of Eqs. (6) and the relation 

p′ = (ρ/γ) c2
s (T′/T0), where cs  is the sound velocity 

in plasma and γ is the constant of adiabatic curve, we 
obtain 

 

s⋅  = 
1
2 γ2 ⎝

⎛
⎠
⎞q

k

2

 ⎝
⎛

⎠
⎞v0

cs

4

 k2
 i 
⎝⎜
⎛

⎠⎟
⎞

1 $ B 
μ w

k2
 i T0

 
〈I2

0〉

〈I2
0〉 + 〈I2

1〉
 . (10) 

 

Here 〈I2
m〉 = (1/π r20) ⌡⌠

0

r
0

 π r dr I2
m(k r) is the average, 

over the cross section, value of Bessel function.  The 
equation, determining the variation of mechanical 

energy in the system, is of the form ε⋅ = $T0 s
⋅.  Hence, 

after substituting Eq. (10) it follows that at the final 
value of the field w, exceeding certain threshold  
value wc , 

 

μ wc = B$1 k2 i T0 (1 + 〈I2
1〉/〈I2

0〉) (11) 
 

and the system entropy decreases and the wave energy 
in plasma gradually increases.  We calculate the 
coefficient of absorption (amplification) of the wave 
propagating along the axis z.  Variation of energy 
occurs following the law exp($2βz), where β is 

determined as β = ε⋅/2v0 ε0, ε0 = (1/2)ρv2
0 is the wave 

total energy (in a unit volume).  Using these 
expressions we can write the following equation: 

 

β = 
k2 i T0 γ

2
 q

2 v4
0

2ρ v3
0 k

2 c4
s

 (1 $ R);   R = 
μ w
μ wc

 . (12) 

 

Let us calculate the velocity of the discharge front 
travel specified by the processes of self-organization.  
For this purpose we write the equation of the front 
motion in the form: 

 

v0 
dT
dz  = D 

d2T

dz2 + F;   D = 
i

ρ cp
 ,  F = 

μ w $ Φ
ρ cp

, (13) 

 

where D is the heat diffusion coefficient, cp is the heat 
capacity at constant pressure, F is the function of 
energy contribution to the discharge. 

Equations of type (13) with the nonlinear 
function F(T) are well known in the theory of 
autowaves7 and together with the boundary condition 
∂v/∂z = 0⏐z = z0 they describe the asymptotically 
stable solutions in the form of a running front.  In 
our case, using Eq. (11), from Eq. (13) the equation 
follows: 

 

v0 = 2 k0 D R $ 1 . (14) 
 

From Eqs. (11), (12), and (14) we conclude that 
the point Rc = 1 is the point of bifurcation in the 
system evolution.  At R > 1 the system manifests itself 
as a continuous amplifier and correctly reflects the 
qualitative dependence of the front velocity on the 
radiation flux density. 
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4. Thus, in the system, at a certain power 
contribution the break of symmetry of the originally 
homogeneous state occurs, which gives rise to 
formation, in the discharge, of such a coherent 
structure as the entropy-vortex wave [from Eq. (6) it 
follows that rot v = 2eϕ k v0 I1(kr) cos(ωt $ kz)], 
propagating with the discharge velocity. Oscillations of 
the plasma channel surface, induced by this wave, cause 
periodic compression and rarefaction of air and thus 
initiate an acoustic wave.  Since the oscillation 
amplitude is small as compared with the wavelength, 
the sound propagation is governed by the wave 
equation for cylindrical acoustic waves.6  Let us 
estimate the average energy flow in an acoustic wave 
I = ρ0c0〈u2〉, where c0 is the sound velocity in air, u is 
the gas speed, ρ0 is the gas density.  Using the 
condition of mass conservation ρ0 u = ρ vr⏐r = r0 at the 
discharge surface and the formula for the radial velocity 
(6), we write the expression for intensity of sound with 
the wavelength λ >> r0: 

 

I = (π/8) ρ0 (ρ/ρ0)
2 r0 v

2
0 ω I2

1(k r0). (15) 
 

It should be noted, taking into account Eq. (14) 
and ω = kv0, that I ~ (R $ 1)1.5. Let us estimate 
quantitatively the results obtained.  As the initial data 
we take the following typical values of the parameters: 
the discharge radius r0 = 0.15 cm, the absorption 
coefficient μ ~ 10$2 cm$1, the temperature 
T0 ~ 16000 K.  With these parameters at hand, the 
sound velocity in plasma is cs = 2⋅105 cm/s, the 
thermal conductivity i $~ 2.5⋅10$2 W/cm⋅K, the 

coefficient B $~ 0.1, the ratio ρ/ρ0 $~ 2⋅10$2 (Refs. 1 

and 2).  Assuming kr0 ~ 0.7 (corresponds to the 
maximum of function (5)), we calculate the wave 
number of a wave in plasma k ~ 5 cm$1.  Substituting 
these data in Eqs. (11) and (14) and using known 
representations of Bessel functions,8 we calculate the 

threshold power pc = πr0
2 ωc $~ 1 MW and the front 

velocity v0 = 25 m/s (at R = 1.1). The coefficient of 
wave convective amplification in plasma can be 
determined using formula (5).  Taking into account the 
fact that α $~ 10$9 J/cm2, (Ref. 9) we have  

g $~ 0.1 cm$1.  Before proceeding to the calculation of 

the level of sound intensity, we have to assess 
applicability of linear description to acoustic waves.  
Note that the wave amplitude a ~ v0/ω, the length of 
acoustic wave λ = 2πc0/ω, the frequency 
ω = kv0(~104 s$1), note also that the condition of 
applicability of Eq. (15) is fulfilled since a <<  λ and 
λ >>  r0.  At typical values of the discharge parameters 
from Eq. (15) the acoustic wave intensity can be 
calculated as I ~ 10$2 W/m2. 

5. Within the limits of hydrodynamic equations in 
the Boussinesq approximation (variation of entropy of  
 
 
 
 

the next order of smallness by the parameter v/cs) we 
have studied the process of the light-induced discharge 
formation.  It is shown that the system has the 
bifurcation point μwc, which reflects the qualitative 
changes in the system state and determines the 
threshold character of the discharge development. 
When exceeding the energy input threshold, the 
irreversible processes in the discharge nonequilibrium 
plasma initiate the discharge self-organization and 
formation of coherent structures in the form of the 
entropy-vortex wave.  Demonstration of these processes 
is the macroscopic effects like the ordered motion of the 
discharge and induced sound.  It should be noted that 
we deal with the cyclic causality: the order parameter 
(the discharge rate v0), on the one hand, governs the 
oscillations (the frequency ω = kv0), and, on the other 
hand, the above parameter turns out to result from the 
inner cooperative space$time structure.  This 
conclusions agrees with the general synergetic 
concepts,10 and the situation shows the so-called 
holistic character of the discharge evolution.  The 
results obtained within the framework of this model 
both quantitatively and qualitatively agree with the 
known data.  In particular, the investigation into 
energetics of acoustic emission of the discharge extends 
the capabilities of remote diagnostics of the integral 
characteristics of laser beams propagating in the 
atmosphere. 
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