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The method of time delay estimation is described as applied to the problem on 
detecting ground-based pulsed sources from satellite.  The method provides for 
separate processing of signals coming to different spacecrafts comprising the 
satellite network.  The method is based on detecting a conditional bench-mark 
(pseudozero point), which is artificially constructed by a computer from the finite-
size set of noisy sampled values of the signal function and uniquely determined by 
these values.  Theoretical analysis and the results of numerical experiments aimed 
at checking the accuracy characteristics of this method show that the method may 
be useful in the applications where tough restrictions are imposed on the bulk of 
information transmitted via the communication channels. 

 

1. The detection of radiation sources using a 
satellite information and measurement system, such as 
NAVSTAR or GLONASS1 is usually made by the range 
difference method.  This method in its version adapted 
to satellite observations is well known in 
radionavigation2; recently it was applied to detection of 
optical sources too (see, for example, Ref. 3).  It is 
based on processing and comparison of data recorded 
with several receivers placed at different points of space 
aboard spacecrafts that comprise a system.  Time delays 
in this method serve as input values for calculating the 
source coordinates.  In the simplest case, time delay is 
defined as a difference between the start times of 
recording at different spacecrafts. 

The efficiency of the method depends, to a great 
extent, on the accuracy of estimating these values from 
observations.  In the case of signals with a gradual 
front and observed against additive noise, the concept 
œstart of recordingB is ambiguous and the algorithm of 
time lag estimation based on it becomes inaccurate.  
The problem arises on development of precise 
algorithms for the time lag estimation, in which the 
above ambiguity is excluded.  This problem is of great 
importance not only for satellite ranging but for many 
other practical applications; and a lot of works are 
devoted to its solution.4 

There are two possible approaches to estimation of 
signal time lags in satellite ranging of radiation sources.  
They provide for simultaneous or separate processing of 
data from different spacecrafts.  Both approaches use 
the concept that the time series formed of these data 
are samples of the same signal, but changed in scale, 
shifted in time, and perturbed by noise. 

In the first approach, the time series are compared 
by pairs by varying time lag and thus the value of time 

lag is sought, which gives, after corresponding scaling, 
their best coincidence by least-squares or some other 
criterion.  It is this value that serves as the estimate of 
the time of relative delay of signals in the pair under 
consideration.  Corresponding methods are performed 
using correlometers5 or adaptive filters operating in the 
regime of identification of an unknown system related 
to it6 (see also Ref. 7).  Unknown system here is the 
operator of transformation of one of the data series 
compared into another one.  These methods give good 
results, but their performance is connected with the 
overload upon the communication channels between a 
spacecraft and a ground-based computer center.  At the 
limited capacity of informational channels, interesting 
are the methods of bench-mark point with separate 
processing of information from each spacecraft that 
corresponds to the second of the above approaches. 

In the bench-mark methods, the time moments ti, 
i = 1,...,N are found, at which each of the N 
spacecrafts observing the source has recorded some 
characteristic point (structure element of vanishingly 
small extent in time) of a signal. In this case the delay 
time estimates are the time differences Δtij = ti $ tj. 

Similar approach is widely used in 
radionavigation, where signals at the outputs of 
transducers have a well pronounced maximum.  For 
signals with a complex shape, unknown a priori, such 
an approach is much more complicated.  The bench-
mark point for such signals is to be artificially 
constructed from the samples recorded against the 
noise.  But one can achieve good results in this 
direction too, if the position of artificially constructed 
(conditional) bench mark on the time axis is uniquely 
determined by a set of sampled data and is low-
sensitive to random shifts of readout points within the 
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observation interval common for all spacecrafts.  It is 
just this approach to estimation of signal delays 
employed in the method of pseudozero point considered 
below.  This method allows simple algorithm to be used 
for its performance at a relatively high accuracy. 

2. Any method based on artificially constructed 
bench-mark point includes two different operations: 
smoothing and extrapolation of noisy data sampled 
from a signal at a finite number of points within the 
observation interval.  Both operations can be done 
simultaneously using the same mathematical formalism 
which is based on the extrapolation method for 
segments of frequency-limited functions and a series of 
data sampled at the Nyquist frequency.8  Such an 
approach is elegant and, in some cases, efficient; 
however, as far as its computer realization is concerned, 
all known algorithms implementing it (see, for 
example, Ref. 9) are rather complicated.  Such a 
complication is justifiable when the problem is to 
completely reconstruct the signal shape.  But to 
construct the bench-mark point with the accuracy, 
dictated by needs of one or other applied problem, it is 
excessive.  Computations can be not so bulky, if these 
two operations are separated and the extrapolation of 
already smoothed data is done by fitting the function 
modeling a signal.  These principles form the basis for 
the pseudozero point method.  This name originates 
from the fact that the bench-mark point selected is zero 
of a model function, which approximates the signal 
within the observation interval but probably disagrees 
with it beyond this interval. 

When developing the method, two versions of data 
smoothing were tested.  One uses the discrete Legendre 
polynomials and another one uses splines.  The 
approximation errors for both versions, in our 
numerical experiment, proved to be close to each other. 

Theoretical analysis of the errors is developed 
much better for the process of polynomial smoothing10; 
that is why we consider it below in more detail. 

3. The problem of sampled data smoothing is 
formulated in the following way.  There are L + 1 
numbers: yn-$L, ..., yn, which are the results of 
observations of the signal y(t) at the moment tn and L 
previous moments.  Given is the class of admissible 
(smooth) functions fn(t), from which the function  

f̂n(t) ≡ ŷn(t) should be selected that most closely fit 
the data (uk, tk), k = n $ L,...,n $ L + 1,...,n 
according to the least-squares criterion. 

We refer to this function as an approximating one 
and consider it as a signal representation within the 
interval (tn$L, tn).  Subscript n in the designations  

ŷn(t) is indicative of the dependence of the 
approximating function on the data sample set by the 

time moment tn.  Samples from ŷn(t) within this 
window will be referred to as smoothed data. 

Let us consider that readings are equally biased, 
assuming tk = kτ, k = n $ L,...,n $ L + 1,...,n, where τ 
is the step of observation, and restrict ourselves by the 
polynomial functions fn.  The latter can be presented as 

linear combinations, 
 

fn = ∑
j = 0

m

 (βj)n ϕj(t) (1) 

 

of the normalized discrete Legendre polynomials ϕi(t), 
orthogonal at a finite set of equally biased points 
 

∑
k = 0

L

 ϕi(k)ϕj(k) = δij ,   ϕi(k) ≡ ϕi(tk) ,   tk = kτ . (2) 

 

Let us select the sum of square discrepancies 
 

en = ∑
r = 0

L

  
⎣
⎢
⎡

⎦
⎥
⎤

yn$L+r $ ∑
j = 0

m

 (βj)n ϕj(r)
 2

 (3) 

 

as the cost function. 

In fitting the approximating function ŷn(t) to the 
values yk, the parameters varied are the coefficients 
(βj)n from Eq. (1).  They are chosen from the minimum 
condition for the functional (3).  Taking the derivatives 
∂en/∂βj, j = 0, 1,...,m, and equalizing them to zero, we 
obtain the system of m + 1 equations for (βj)n.  From 
this system and taking into account the conditions  of 
orthonormality (2), we can find 
 

(β̂i)n = ∑
k = 0

L

 yn$L+k βj(k) ,   i = 0, 1, ... , m. (4) 

 

In this case 
 

Di ŷn(t) = ∑
j = 0

m

 (β̂j)n 
äi

äti
 ϕi(t) ,   i = 0, 1, 2, ... . (5) 

 

Thus we derived the approximating dependences for the 
signal y(t) and its derivatives Diy(t) ≡ diy(t)/dti, 
i = 1, 2,... .  Let us call the set of numbers  

Diŷn(tn + h) ≡ Diŷn,n+h, i = 0, 1, 2,..., resulting from 
equations (5) as the estimate of the system state at the 
time moment tn+h. 

The vector of observations yn and the vector of 
system state estimates y(n, n+h) are related by the linear 
relationship 
 
y(n, n+h) = W(h;τ)y(n) . (6) 
 

The matrix operator W(h; τ) can be factorized; it 
can be presented as a product of several simpler 
matrices, that can readily be calculated based on the 
methods of discrete functional analysis.10  Having 
W(h; τ) known, one can calculate the covariance 

matrix, Ŝ(n)(h; τ), for the errors of estimation. If the 
measurement noise is uncorrelated and has zero mean 

and a variance σν
2, it is calculated by the expression 

 

Ŝn(h; τ) = σν
2 W(h; τ) W 

T(h; τ) . (7) 
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For large samples L » m, the elements of the 

matrix (7) can be presented as functions of τ, L, and σν
2 

as follows 
 

[Ŝ(n)(h;τ)]ij ≈ {αij / [τi+j Li+j+1]} σν
2 , (8) 

 

where αij are constants depending on h and m.  Using 
the approximate equality (8), let us consider the 

diagonal elements of the matrix Ŝn with indices (0, 0) 
and (1, 1) in more detail.  They correspond to the 

variances of errors of estimating the signal σν
2 and its 

first derivative σν
2.  At h = $L/2, i.e. at the center of 

window, where the accuracy of estimating y(t) and 
y′(t) is the best, the coefficients entering into Eq. (13) 
take the following values: 
 

α00 = 1.00 ,   α11 = 12   for   m = 1; 
α00 = 2.25 ,   α11 = 12   for   m = 2; (9) 
α00 = 2.25 ,   α11 = 75   for   m = 3; 
 

Thus for m = 2 the variances of the corresponding 
estimates are equal to 

 

⎭⎪
⎬
⎪⎫σ

2

ŷ ≈ 
2.25
L

 σν
2 ;

σ
2

y′^  ≈ 
12

τ2L3 σν
2 .

 (10) 

 

The values of αij and consequently the variances 

σν
2 and σν

2 increase as the sampled point moves outward 
from the window center.  This decrease is initially slow 
and then, beyond the observation interval, it becomes 
faster and faster.  The estimates of the system state 
(values of the signal and its derivatives) lose their 
meaning at polynomial smoothing for values h > 1 and 
h < $(L + 1).  The systematic errors of estimation, 
determined by the value of the first neglected term in 
y(t) expansion into a power series, also increase 
outward from the window center.  But their 
dependence on m and L is opposite to that 
characteristic of the random errors: the estimates biases 
decrease with increasing m and increase with increasing 
L.  In the case, when polynomial model 
 

ŷ(t) = ∑
k = 0

m

 ak tk (11) 

 
with h-independent coefficients ak describes the signal 
front rather well in the region of observations spanning 
all possible estimation windows in processing the data 
from different spacecrafts, the systematic errors of 
smoothing can be neglected in the pseudozero point 
method. 

4. Quick increase of the errors in polynomial 
approximation of the signal beyond the estimation 
window makes the use of this approximation 
worthwhile only for smoothing, but not for 
extrapolation of the data.  In all cases, when the a 
priori information needed is available, the use of the 

structure model of the signal with its fitting to 
smoothed data turns out to be more efficient for 
extrapolation purposes. 

In the class of problems considered on detecting 
sources of optical radiation, the model of signal as a γ-
distribution function in the form 

 

ŷ(t) = C(t $ t
∼
) exp[$(t $ t

∼
) / T] U(t $ t

∼
) , 

(t $ t
∼
) <  < T , (12) 

U(t $ t
∼
) = 

⎩
⎨
⎧0,   t ≥ t

∼
,

1,   t < t
∼
;
 

 

can be adequate in many practical applications.  This 
model can be also considered as a particular case of the 
Neubool distribution.  The parameters of this model are 

the signal t
∼
 zero  and the constants C and T.  This 

model can readily be fitted to the experimental data in 
both time and frequency regions.  Let us take the 
frequency region and estimate the expected errors of 
data extrapolation to zero for signals allowing their 
presentation by the model (12).  As the initial values, 

we use the above-obtained estimates of ŷk and ŷ ′k for 
the signal and its derivative, or, to be more correct, 
their ratios 
 

Ak = ŷ ′k/ŷk ,   k = k = 0, 1, ... , n $ 1 , (13) 
 

found for the center points of the smoothing windows 
(Fig. 1). 

 

 
FIG. 1. Determination of the bench-mark point $ 
pseudozero point of a signal. 

 

The substitution of ŷk′ and ŷk by their ratios Ak 
allows us, with the help of equality 
 

ŷ′(t)/ŷ(t) = [1/(t $ t
∼
)] $ 1/T (14) 
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following from Eq. (13), to exclude the constant C 
from our consideration. The calculational relationships 

to fit the parameters t
∼
 and T are 

 

[1/(ti $ t
∼
)] $ 1/T = Ai ; 

 

[1/(tj $ t
∼
)] $ 1/T = Aj , (15) 

 
where ti and tj are the time moments, corresponding to 
the arbitrarily selected pair of windows i and j.  Let 

Δ = tj $ ti and β = t0 $ t
∼
.  Then it immediately follows 

from Eq. (15) that 
 

t
∼
 = t0 $ β ,   T = (β + iΔ)/[1 $ Ai(β + iΔ)] ; 

 

C = ŷi / {(ti $ t
∼
) exp [$ (ti $ t

∼
)/T]} , (16) 

 
where 
 

β = Δ 

⎩
⎨
⎧

⎭
⎬
⎫

$ 
i + 

j

2
 + 

1
2

 ⎣
⎡

⎦
⎤

(i + j)2
 + 

4(i $ 

j)
(Ai $ Aj)Δ $ 4ij

1/2

. (17) 

 

The errors of estimating β and, consequently, 

tcon ≡ t
∼
 are determined by the errors of estimating Ai 

and Aj entering into Eq. (17) that depend on ŷi, ŷ′i and 

ŷj, ŷ′j.  The values Ai and Aj are statistically 
independent and there is no correlation between them.  
If estimation is done by points situated at the centers of 
smoothing windows i and j, there is no correlation 

between ~y′
i and ~yi too, what can be seen from the 

dependences shown in Fig. 2.  Under these conditions, 
the variance of errors of tcon estimation can readily be 
calculated. 

 
FIG. 2. Random errors of σŷ (1), σŷ′ (2), and the 

correlation coefficient ηŷ′ ŷ (3) vs. the number of the 
grid point i of the window of smoothing (L = 21) by 
the discrete orthogonal Legendre polynomials. 

Let m = 2, Δ = L, i = 0 and j = 1.  Taking into 
account that signals have a considerable portion of 
leading edge close to linear one, we assume 
 

y
$
^ 0 $∼ Cβ$ ,   y

$
^ 0′$∼ C,   y

$
^ 1 $∼ C (β$ + L),   y

$
^ 1′ $∼ C , 

 

where the bar over ŷi and ŷ′i denotes that these values 
correspond to the points situated at the centers of 
smoothing windows.  Then, with regard for above-
obtained estimates (10) for errors of the smoothed data, 
we have 

σcon $∼ 
σν

C
 
[β$(β$ + Lτ)]2

L(Lτ + 2β$)
 × 

 

× 
⎣
⎢
⎡

⎦
⎥
⎤ 

⎝
⎜
⎛

⎠
⎟
⎞1

 β$2
 + 

1

(β$ + Lτ)2
 
12
L3 + 

⎝
⎜
⎛

⎠
⎟
⎞1

 β$4
 + 

1

(β$ + Lτ)4
 
2.25
L

  .   

  (18) 
 

The parameter σν/C entering into Eq. (18) corresponds 
to the time tν during which the model signal (12) 
increases from zero level to the level of noise.  This 
time is related to the signal duration T and the signal-
to-noise ratio at maximum, S, through the following 
relationship: tν = T/Se, where e ≅ 2.7 is the base of 
natural logarithm.  For different values close to unity 

at L = 21 we obtain σcon $∼ 1.5, 0.87, 0.35 μs for 

tν = 1.4, 1.0, 0.5 μs. 
These values of tν correspond to signals with a 

sufficiently large signal-to-noise ratio in maximum $ 
about 20 dB or greater. For example, at T = 500 μs, 
the value tν = 0.5 μs corresponds to 3S ≈ 370.  For 
small S the error of tcon estimation grows. 

5. Delay times are determined as differences 
between two independent random values: tcon for the 
corresponding pair of signals.  Therefore, for the 
variance of delay time estimation we can take 
 

σ 2
Δt

 ≈ 2σ2
tcon

 . (19) 

 
At σtcon

 = 0.35 μs the uncertainty in Δt values is 

about 0.5 μs, that makes it possible to estimate the 
source coordinates accurate to 100$150 m.  Such an 
accuracy is sufficient for a number of practical 
applications. 

The above values of errors of signals delay time 
estimation by the method of pseudozero point were 
checked in numerical experiment with 600 series of 
model data using 256 samples in each series for both 
polynomial and spline smoothing.  The results were 
close in both cases and they differed from the 
theoretical estimates by no more than 15$20%.  Thus, 
for sufficiently high-power signals the accuracy 
characteristics of the method meet medium-stringent 
requirements to the resolution of a ranging system.  The 
method is easy in realization and may be useful for 
applications connected with the problem of satellite 
detection of radiation sources, when it is necessary to 
minimize the bulk of information transmitted via 
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communication channels to the Earth.  An example of 
such an application is the problem of prompt estimation 
of parameters of light emitting objects at the Earth’s 
surface. 
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