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It is proved that the Rayleigh, Rayleigh$Hans$Debye, anomalous 
diffraction, and Fraunhofer diffraction approximations are the corollaries of the 
integral wave equation in the WKB approximation.  The homogeneous sphere is 
considered as an example. 

 

Approximation methods for solving the light 
scattering problems are widely applied in optics of 
colloids, hydrosol and biological suspended particles 
simpler.  They are based on using the well-known 
physical mechanisms and are simpler for analysis than 
the exact solution.  However, their disadvantage is the 
limited domain of their correct applicability. 

In this connection, it is necessary to develop and 
apply the methods that combine the simplicity of 
solution and the possibility of using them in wider 
optical ranges. 

This paper is aimed at the study of the wave 
equation in the WKB approximation in the areas of 
legality of the most well-known approximations for 
œsoftB particles (Rayleigh, Rayleigh$Hans$Debye 
(RHD), anomalous diffraction (AD) and Fraunhofer 
diffraction (FD) approximations). 

Let us consider the integral representation of the 
scattering amplitude as one of the tools of obtaining the 
approximate solutions.1$6 

Using the Hertz vector properties,2 one can obtain 
the expression for the field scattered by a particle in 
the far zone: 

 

Es(r) = f(o, i)(eikR/R); (1) 

f(o, i) = 

k2

4π⌡
⌠
V

 

 
${o×[o×E(r′)]}[m2(r′) $ 1]exp($ikr′o)dV′,  

  (2) 
 

where kR >>   1, k  = 2π/λ   is the wave number of the 
disperse medium; R is the distance from the point of 
observation to the particle along the scattering direction; 
i and o are the unit vectors of the direction of 
propagation of incident and scattered radiation, 
respectively; m is the relative refractive index; E(r′) is 
the time-independent component of the electric field 
inside the particle. 

The relationship (2) is the exact integral expression 
for the scattering amplitude in terms of the field E(r′) 
inside the particle.  In the general case E(r′) is not 

known and does not give the closed description for 
f(o, i).  However, based on physical ideas, one often can 
approximately replace E(r′) by a known function and 
thus obtain a useful approximate solution. 

Let us consider the WKB approximation, for 
which E(r′) inside the particle is approximated by the 
propagating wave with the wave vector corresponding 
to the particulate matter.  It is also supposed that the 
direction and amplitude of the wave do not change 
when passing the scatterer. 

Taking into account the aforementioned, 
 

E(r′) = eiexp{ikr1 ⋅i + ik ⌡
⌠
Z1

Z′

 

 
m(z′)dz′}, (3) 

 

where ei is the vector of polarization, Z1 = (r1⋅i) is the 
input coordinate of the particle surface for the wave 
passing through the point r1, Z′ = (r′⋅i). 

Substitution of Eq. (3) into Eq. (1) with small 
redesignations and regrouping gives 

 

f(o, i) = (k2/4π){$ o×[o×ei]}VF(o, i), (4) 

F(o, i) = 

1
V ⌡

⌠
V

 

 
[m2$ 1]exp(iksr′)exp{ik⌡

⌠
Z1

Z′

 

 
(m $ 1)dz′}dV′, 

 

where ks = k⋅is = k(i $ o) and is directed along the 
bisector of the complementary scattering angle; 
⏐is⏐ = 2sin(θ/2); θ is the scattering angle, or the angle 
between i and o. 

When 
 

⏐m $ 1⏐ <<   1,   ⏐m $ 1⏐ρmax <<   1, (5) 
 
where ρmax is the maximum diffraction parameter of the 
scatterer, is satisfied, 
 

exp{ik ⌡
⌠
Z1

Z′

 

 
(m $ 1)dz′} | 1 (6) 
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and Eq. (4) coincides with that for RHD: 
 

F(o, i) = 
1
V ⌡

⌠
V

 

 
(m2 $ 1)exp(iksr′)dV′.  (7) 

 

Thus, the WKB approximation is the 
generalization of the RHD approximation taking into 
account the phase shift, i.e. the œprehistoryB of the 
beam coming to the point r′. 

Let us note that the physical scheme of 
constructing the light scattering mechanism in RHD is 
based on the usual Rayleigh radiation, i.e. each element 
of the particle is considered as independent Rayleigh 
scatterer, the dipole.  Since the radiation of different 
elements is coherent, then the waves scattered by them 
interfere with each other and partially quench each 
other due to different positions of elements in space.  
Formula (4) is constructed based on quite different 
principles (3), giving however the same result as the 
physical scheme under the condition (5). 

Let us also note that the principle of the Fourier 
transform of internal field, a fragment of which is used 
in Eq. (4), is also applied for constructing the exact 
solution.7 

For the œsoftB particles, whose size is much less 
than the wavelength, 

 

exp(iksr′) | 1. (8) 
 

Taking into account Eq. (6), we obtain E(r′) = ei.  
Substitution of Eqs. (6) and (8) into Eq. (4) leads to 
the results coinciding with the results of Rayleigh 
approximation8 obtained by electrostatic methods: 

 
⏐f⏐ = (k2/2π)⏐m $ 1⏐Vsinχ, (9) 
 
where χ is the angle between ei and o. 

The error of using Eq. (9) in comparison with the 
electrostatic formulas in the limiting cases of 
asphericity (ε = 0,∞) does not exceed 15.5 and 12.7%, 
respectively, for m ≤ 1.14 and decreases with decreasing 
m and asphericity of particles.9 

Using the properties of particulate softness and 
continuity of m(r′) and making small regrouping, one 
can write Eq. (14) in another form: 

 

F(o, i) = 
2

ikV ⌡
⌠
S

 

 

⌡
⌠
Z

 

 
exp[F

$
(z)]exp[iksr′]dF

$
(z)dS′, 

F
$
(z) = ik ⌡

⌠
Z1

Z′

 

 
(m $ 1)dz′. (10) 

 

According to the accepted designations and the 
scheme of calculation 

 
ks = ks1x + ks2y + ks3z, (11) 
 
where 

ks1 = $ k sinθ cosφ; 
 

ks2 = $ k sinθ sinφ; 
 

ks3 = k (1 $ cosθ) = 2k sin2(θ/2).  (12) 
 

Let us note that (θ, φ) forms the scattering plane 
identical with (i, o) about the plane of incidence 
(i, ei). 

As is seen from Eqs. (11) and (12), for 
 

2kz sin2(θ/2) <<   1,   θ <<   1 (13) 
 

ksr′| ks1x′ + ks2y′,    (14) 
 
i.e. does not depend on z.  Then we obtain from 
Eq. (10) 
 
F(o, i) = 

=  

2i
kV ⌡

⌠
S

 

 
{1$exp[ik⌡

⌠
Z1

Z2

 

 
(m(r′)$1)dz′]}exp(iksr′)dS′. (15) 

 
Here Z2 is the exit coordinate of the particulate 

surface for the wave passing through the point with the 
radius-vector r′. 

Formula (15) holds correct accurate to a small 
error if one replaces Eq. (13) by the less strong 
condition: 

 
2kZ3 sin2(θ/2) < 0.5, (16) 
 
where Z3 = max{⏐Z1⏐, ⏐Z2⏐}.  The scattering angles, 
within which practically all the scattered energy  
is contained for large particles,8 satisfy the  
condition (16). 

Thus, we obtain 
 

kext = (4π/k)Imf(i, i′)ei = 
 

= 2Re⌡
⌠
S

 

 
{1 $ exp[ik⌡

⌠
Z1

Z2

 

 
[m(r′) $ 1]dz′]}dS′, (17) 

 
⏐f(o, i)⏐ = 

=  

k
2π ⌡

⌠
S

 

 
{1$exp[ik⌡

⌠
Z1

Z2

 

 
[m(r′)$1]dz′]}exp(iksr′)dS′, 

  θ <<   1. (18) 
 

Expressions (17) and (18) are identical to that 
given by the approximation of anomalous diffraction for 
the scattering cross section and the small-angle 
scattering amplitude,8 respectively, that are based on 
absolutely different scattering mechanisms.  Expressions 
(17) and (18) in AD approximation are derived on the 
base of using the Huygens principle in the Fresnel 
interpretation for the particle projection perpendicular 
to the sounding radiation, taking into account the 
phase shifts of corresponding beams coming to it. 



540   Atmos. Oceanic Opt.  /June  1996/  Vol. 9,  No. 6 V.N. Lopatin and N.V. Shepelevich 
 

 

For large particles, satisfying the condition 
⏐m $ 1⏐ <<   1, 

k⌡
⌠
Z1

Z2

 

 
 [m(r′) $ 1]dz′ = Ψ(x, y) ≠ const >>   1,  

kΔx,   kΔy >>   1, (19) 
 
for the majority of scatterers of real shapes, the 
integrals of the second term in Eqs. (17) and (18) are 
much less than that of the first term, because the 
second term is the oscillating sign-changing function, 
whose absolute value does not exceed unity, while the 
first term is equal to unity. 

Thus, taking into account Eq. (19), we obtain for 
the small-angle approximation 

 

⏐f(o, i)⏐ = 
k
2π ⌡

⌠
S

 

 
exp(iksr′)dS′ = 

k
2π SG; 

G = 
1
S ⌡

⌠
S

 

 
exp(iksr′)dS′ . (20) 

 
Taking into account Eq. (14), the expression (20) is 
the absolute value of the Fresnel amplitude function 
and corresponds to the Fraunhofer diffraction.8 

Let us demonstrate the legality of the noted 
general conclusions using the light scattering by a 
homogeneous sphere as a particular example. 

The following expression was obtained in Ref. 10 
for a sphere in the WKB approximation: 

 

⏐f(o, i)⏐ = sinχ(k2/2π)(m $ 1)⏐F(θ)⏐; (21) 

F(θ) = 
4πa2

k3
 ⌡
⌠
0

1

 

 
J0(ρsinθ 1 $ t2sin[ρ(m $ cosθ)t]× 

× exp(itΔ/2)tdt,  
 

where k3 = k(m $ cosθ); J0(x) is the Bessel function of 
the zero order. 

The real part of the integral (21) can be reduced 
to the Sonin integral, that yields 

 

Re[F(θ)] = (2πa2/k3){(B1/U3
1)[sin(U1)$U1cos(U1)] $ 

 

$ (B2/U3
2)[sin(U2) $ U2cos(U2)]}, (22) 

 

where 
 

B1 = Δ/2 + ρ(m $ cosθ);    B2 = ρ(cosθ $ 1);    
 

U1 = ρ2 sin2θ + B2
1;  

 

U2 = ρ2 sin2θ + B2
2.   

 

Obviously, the real part of the light scattering 
amplitude (21) makes the principal contribution at the 
small phase shift, i.e. in the RHD domain.  Then it 
follows from Eq. (22) 

B1 ≈ $ B2,   U1 ≈ U2 = 2ρsin(θ/2), (23) 
 
i.e. the light scattering amplitude is equal to 
 

⏐f(o, i)⏐ = sinχ2(m$1)ρ2 a[(1/U3
2)(sinU2$ U2cosU2)],  

  (24) 
 

that corresponds to the RHD light scattering 
amplitude. 

In the case of AD approximation, in the small-
angle region (θ <<   1), 

 

B2 ≈ $ ρ θ2/2 <<   1,   B1 ≈ Δ (25) 
 
and the light scattering amplitude has the form: 
 

f(o, i) = ρa{⌡
⌠
0

1

 

 
J0(ρ sinθ 1 $ t2) sin(Δt)tdt +  

+ i⌡
⌠
0

1

 

 
J0(ρ sinθ 1 $ t2)[1 $ cos(Δt)]tdt}, (26) 

 
that corresponds to the AD formula given in Ref. 8, if 
one takes t = sinτ. 

Let us analyze in more detail the imaginary part of 
the scattering amplitude for Δ >>    1.  Obviously (see 
Eqs. (21), (22), and (26)), the real part in this case does 
not significantly affect the shape of the scattering phase 
function.  Then one can write the integral (21) in the 
form 
 

⏐F(θ)⏐ = (2πa2/k3) × 

× ⌡
⌠
0

1

 

 
{cos(B2t) $ cos(B1t)}J0(ρsinθ 1 $ t2)tdt. (27) 

 
If the function cos(Bt) is expanded into the Bt 

power series (the terms of the series are derived by 
means of the first Sonin integral), then we obtain 

 

⏐F(θ)⏐ = 
2πa2

k3
 ∑
n=1

∞
 ($1)n 

Jn+1(z)
zn+1  

1
(2n $ 1)!! {B

2n
2  $ B2n

1 },  

  (28) 
 

where z = ρ sinθ. 
In the small-angle approximation θ <<    1, the last 

series reduces to the series suggested in Ref. 8 for AD: 
 

⏐F(θ)⏐ = 
 

=
2πa2

k3
 
⎩
⎨⎧

⎭
⎬⎫Δ2 1

z2 J2(z) $ 
Δ4

1⋅3 
1
z3 J3(z) + 

Δ6

1⋅3⋅5 
1
z4 J4(z) . . . .  

  (29) 
 

One can represent the expression (27) in the 
form of another series, if using the expansion of the 

Bessel function J0(ρ sinθ 1$t2).  Then we obtain 
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⏐F(θ)⏐ = 
2πa2

k3
 

π
2

∑
n=0

∞
 
 
($z2/4)n

n!   × 

 

× {(B2/2)$n$1/2
 Hn+3/2(B2)$ (B1/2)$n$1/2

 Hn+3/2(B1)},  
  (30) 
 
where Hν is the Struve function.11 

Under the condition Δ >>   1 and ρ(1$cosθ) <<   1 
one can reduce the last series to a simple expression 

 

⏐F(θ)⏐ = 
2πa2

k(m $ 1)⎩
⎨⎧

⎭
⎬⎫

J1(z)
z  + 

1
4 (K(B1) $ 2) , (31) 

 
where 
 

K(B1) ≈ K(Δ) = 2 $ 
4sinΔ

Δ  + 
4
Δ2 (1 $ cosΔ). 

 
Let us note that K(Δ) is the factor of extinction 

efficiency for nonabsorbing particles.  In particular, it 
is seen that the small-angle scattering phase function 
depends on Δ similarly to the factor of light scattering 
efficiency. 

Kext = 2 for Δ → ∞ and, hence 
 

f(o, i) = 
iρa
2  ⎝

⎛
⎠
⎞2 

J1(ρ sinθ)
ρ sinθ , (32) 

 

that corresponds to the Fraunhofer diffraction. 
In Ref. 8, for the small-angle region the expression 

was obtained that immediately follows from Eq. (26) 
 

Im[F(θ)] = 
2πa2

k3 ⎩
⎨
⎧1
z J1(z) + 

Δ
U2

πU
2  N3/2(U) +  

 

+ 
⎭
⎬⎫

1
Δ2 J0(z) + 

1⋅3
Δ4  z J1(z) + . . . , (33) 

 

where U = Δ2 + z2; N3/2(U) is the Neumann function. 
Restricting ourselves to the two first terms  

(Δ >>    1), we obtain 
 

⏐F(θ)⏐ = 
2πa2

k3 ⎩
⎨⎧

⎭
⎬⎫

1
z J1(z) $ 

Δ
U2⎝

⎛
⎠
⎞sin(U) + 

cos(U)
U , (34) 

 
that practically coincides with Eq. (31). 

Then it is seen therefrom that the positions of 
extrema of the scattering phase function (in the 
z = ρ sinθ coordinates) execute damped oscillations 

about the positions of extrema corresponding to FD, as 
Δ (Δ >>   1) increases. 

The initial start positions of the extrema are 
defined by the RHD approximation (in particular, 
minima are at the points z = 4.49; 7.73;...), and the 
final positions are at the points corresponding to FD 
(in particular, minima are at z = 3.83; 7.01;...).  In this 
case the distance between neighboring minima remains 
practically constant and equal to π in the coordinates of 
z. 

Thus, it is proved, based on the study performed, 
that the Rayleigh, RHD, AD, and FD approximations 
are the corollaries of the wave equation in the WKB 
approximation. The general scheme for structure 
formation of the light scattering phase function is 
constructed in this case on the basis of RHD scheme 
that undergoes the corresponding linear shift toward 
the FD scheme with subsequent damped oscillations 
about it as Δ increases. 
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