
A.I. Borodulin et al. Vol. 9,  No. 6 /June  1996/ Atmos. Oceanic Opt.  
 

0235-6880/96/06  525-03  $02.00  © 1996 Institute of Atmospheric Optics 
 

525

PROBABILITY DENSITY FUNCTION OF THE "SPOTS" OF AEROSOL 
DEPOSITS ON THE UNDERLYING SURFACE 

 
A.I. Borodulin, B.M. Desyatkov, and S.R. Sarmanaev 

 
State Scientific Center "Vektor", 

Scientific Research Institute of Aerobiology, Novosibirsk region 
Received January 26, 1996 

 
This paper deals with the development of the method of determination of 

the mean value and standard deviation of the areas of aerosol deposition 
"spots" on the underlying surface.  The probability density function of the 
aerosol deposition spots area on the underlying surface was obtained as an 
exact analytical solution of Kolmogorov equation.  For the aerosol pollution 
dispersal in the air over Novosibirsk, some examples of the practical 
application of the probability density function are discussed. 

 
Determination of the aerosol fallout density on 

the underlying surface is needed when solving some 
applied problems.  The geometrical structure of the 
deposits is such that the zones with different fallout 
density are often separated by almost clean areas.  
This phenomenon was called "spottiness".1 This 
phenomenon is connected with the statistical 
character of the process of aerosol dispersal in the 
atmosphere. 

Methods of determining mathematical 
expectation and variance of the aerosol deposit spot 
area on the underlying surface are described in Ref. 2 
using the approach developed in Ref. 3.  More 
complete information about the distribution of spot 
area can be obtained using the probability density 
function (PDF).  For instance, if this function is 
known, one can determine the probability that the 
spot area S exceeds certain preset value.  The aim of 
the paper is to obtain PDF of spot area and to study 
some of its characteristics. 

Within a certain domain Ω, the value S can be 
obtained as follows: 

 

S = ⌡⌠ 

 

  ⌡⌠ 

 

 

Ω

g(x, y, t) dxdy ;    

g(x, y, t) = ⎩
⎨⎧ >1,   if  q(x, y, t) ≥ q0
0,   if  q(x, y, t) < q0

, (1) 

 
where q(x, y, t) is the value of the fallout density 
at a point of the underlying surface with the 
coordinates x and y at the moment t, and q0 is a 
preset threshold value of the fallout density.  The 
range of the change of the value S is 0 ≤ S ≤ SΩ 
where SΩ is the area of the domain Ω and t ≥ 0.  In 
fact, one can always choose a domain Ω such that S 
is much less than SΩ.  Then one can consider that 
SΩ = +∞.  Let us temporarily set non-zero initial 
values for the area and time moment S0 ≤ S < +∞, 
t0 ≤ t. 

The change of the aerosol concentration at a 
given point of the space can be approximately 
considered as a Markovian diffusion process under 
certain assumptions.3,4  The change of the fallout 
density can also be described as a Markovian 
diffusion process under the same assumptions.  As a 
consequence, we assume that the process of the 
change of the aerosol deposit spot area is also 
Markovian diffuse. 

The Fokker–Planck–Kolmogorov equation5 for 
the PDF of the area transform from the initial state 
S0, t0 to the final state S, t (the PDF is denoted by 
f(S, t; S0, t0)) has the form 

 
f
t + V(t) 

f
S $ Q(t) 

2f
S2 = 0 , (2) 

 

where V(t) is the mean value of the local rate of the 
spot area change, and the coefficient Q(t) multiplied 
by two is the local rate of the increment change of 
the Markovian process considered.5 

In the general case, the "particles" of the 
statistical area ensemble leave the boundary S = S0 
at different time.  So there exists a non-zero 
probability that a part of them is at the boundary 
S = S0 at t > 0.  When S > S0, PDF is a continuous 
and smooth function.  So, allowing for Ref. 6, it 
should have the form 

 

f(S, t; S0, t0) = γ0(t, t0) δ(S $ S0) + 
 

+ θ(S $ S0) f1(S, t; S0, t0) , (3) 
 

where γ0 is the probability of observing the values 
S = S0 in a given statistical ensemble; δ is the delta 
function; θ is the unit step function corresponding to 
it; f1 is the continuos component of the PDF. 

It is obvious that the initial and boundary 
conditions for S = +∞ are as follows: 

 

f1(S, t0; S0, t0) = δ(S $ S0) ; f1(+∞, t; S0, t0) = 0 . (4) 
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To formulate the boundary condition for S = S0 
and derive the expression for γ0, we use the known 
technique.6  Let us substitute Eq. (3) into Eq. (2), 
then multiply it by an arbitrary smooth function 
ϕ(S) and integrate this expression over S between –∞ 
and +∞.  Since the function ϕ is arbitrary, we obtain 

 

f1
t  + V(t) 

f1
S $ Q(t) 

2f1
S2 = 0 , 

γ0
t  $ Q

f1
S S = S0

 = 0 ;   f1(S0, t; S0, t0) = 0 , (5) 

 
what, in combination with Eq. (4), formally 
determines the system of the initial, boundary, and 
additional conditions intended for determining the 
probability γ0. 

However, it is impossible to proceed to solving 
the problem (4) and (5).  Note that the derivative of 
γ0 with respect to t is always negative when the spot 
area grows monotonically.  On the other hand, the 
derivative of f1 with respect to S is always positive 
for S = S0 what makes an unresolvable contradiction.  
In this condition, one can apply the inverse 
Kolmogorov equation5 which can be taken instead of 
Eq. (2) and relate1 it to the initial state S0, t0 

 
f
t0

 + V(t0) 
f
S0

 + Q(t0) 
2f
S2

0
 = 0 . (6) 

 

By making use of the procedure used in the 
derivation of Eq. (5), we obtain 
 

f1
t0

 + V(t0) 
f1
S0

 + Q(t0) 
2f

1

S2
0
 = 0 ;   (S0 ≤ S, t0 ≤ t) ; 

 

γ0
t0

 $ Q
f1
S0 S0 = S

 = 0 ;   f1(S0, t; S0, t0) = 0 . (7) 

 
The correctness of this procedure can be verified 

by solving the problem.  Now, we note that the 
initial and the boundary conditions for S0 = S are 
contradictory at the initial time moment.  This 
inconvenience can be removed by the transition from 
the PDF f(S, t; S0, t0) to the distribution function of 
the area F(S, t; S0, t0) which can be obtained by 
integration of Eq. (3) over S between $∞ and S.  The 
structure of the function F has the form 
F(S, t; S0, t0) = θ(S $ S0) F1(S, t; S0, t0).  Thus, let us 
formulate the problem in the following form 

 

F
t0

 + V(t0) 
F
S0

 + Q(t0) 
2F
S2

0
 = 0 ; 

 

F(+∞, t; S0, t0) = 1 ; F(S, t0; S0, t0) = ⎩
⎨⎧ >1, S > S0
0, S < S0

. (8) 

 

One more boundary condition for F determines 
the PDF normalization but we do not fix it at this 
step.  The following relation 

F1 = 1 + 
1
2 ⎣
⎡erf ⎝

⎛
⎠
⎞S $ S0 $ β′1

β′2
 $ ⎦

⎤erf ⎝
⎛

⎠
⎞S + S0 + β′1

β′2
 ; 

 

β′1 = 

 t

t0  
⌡⌠ V(t1)dt1 ;   β′2 = 2 

⎣
⎢
⎡

⎦
⎥
⎤

⌡⌠
t0

t

 Q(t1)dt1

1/2

,  (9) 

 
where erf is the probability integral being an exact 
solution of the equation (8), and the function F 
satisfies the initial and boundary conditions for 
Eq. (8). 

By differentiating F with respect to S we obtain 
the relation for the PDF of the area 

 

f(S, t) = ⎣
⎡

⎦
⎤1 $ erf ⎝

⎛
⎠
⎞β1

β2
 δ(S) + θ(S) f1(S, t) ; (10) 

 

f1(S, t) = 
1

π1/2β2
 
⎩⎪
⎨
⎪⎧
exp ⎣⎢

⎡
⎦⎥
⎤

$ ⎝
⎛

⎠
⎞S $ β1

β2

 2

 $  

 

$ 
⎭⎪
⎬
⎪⎫

exp ⎣⎢
⎡

⎦⎥
⎤

$ ⎝
⎛

⎠
⎞S + β1

β2

 2

  ; 

 

β1 = 

 t

0  
⌡⌠

 
 V(t1)dt1 ;   β2 = 2 ⎣

⎡ 

 

 t

0  
⌡⌠

 
 Q(t1)dt1 ⎦

⎤ 
 

1/2

. 

 
Let us consider some properties of this 

solution.  It is easy to see that PDF (10) is 
normalized by unity.  The parameter β1 is the 
mathematical expectation of the spot area.  It and 
the variance of spot area can be obtained in 
accordance with Ref. 2.  To apply the PDF (10) in 
practice, let us connect the value of Q and, 
consequently, the parameter β2 with the variance σ2 
of the spot area.  Calculations lead to the following 
expression3 

 
σ2

β2
1
 = 

1 $ γ0
2β2

0
 $ γ0 + 

1
π1/2β0

 exp($ β2
0) ;   β0 = 

β1

β2
 . (11) 

 
The probability γ0 takes zero value and the 

form of the PDF is close to the normal distribution 
and 21/2σ = β2 in the case when β0 tends to infinity 
(in fact, it is already fulfilled when β0 > 2, see 
Ref. 3).  When β0 = 0, the PDF degenerates into 
the delta function. 

In the general case, the process of wind rise of 
particles can occur simultaneously with their 
deposition.  For instance, this process is observed 
when wind blows aerosols containing radioactive 
nuclides off the underlying surface.  These processes 
compete.  If deposition dominates over the rise, β1 
grows, otherwise β1 decreases.  It is easy to verify 
that the PDF (10) describes the process considered 
adequately.  It should be noted that the solution 
presented is valid only if the value S0 is zero.  The 
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solution for S0 different from zero is not yet obtained 
what does not exclude the application of approximate 
numerical methods to solving the above problem in 
the general case. 
 
TABLE I.  Calculated values of the probabilities Pi 
(β1 > S) for S = 1.5⋅108, 8.3⋅107, 1.4⋅107, 4.0⋅106 m2. 
 

q0, g/m2 β1, m
2 σ, m2 P1 P2 P3 P4 

1.0⋅10$6 1.5⋅108 4.0⋅107 0.50 0.95 1.00 1.00
2.0⋅10$6 1.3⋅108 8.5⋅107 0.41 0.70 0.86 0.86
5.0⋅10$6 8.3⋅107 3.9⋅107 0.04 0.50 0.95 0.96
1.0⋅10$5 5.4⋅107 3.6⋅107 0.00 0.22 0.83 0.85
2.5⋅10$5 1.4⋅107 4.6⋅107 0.04 0.08 0.11 0.11
4.1⋅10$5 4.0⋅106 8.5⋅105 0.00 0.00 0.00 0.50

 
To illustrate the application of the algorithms 

proposed and obtain realistic estimations of 
pollution characteristics under typical 
meteorological conditions, a series of calculations 
on propagation of ash released by the heat and 
power station HPS-2 of Novosibirsk was performed.  
A part of the results related to the subject of the 
present paper is given in the table.  A hypothetical 
example of a snap-action discharge of 32 kg of ash 
at 15:00 on the 1st of June under the wind velocity 
of 2 m/s at the level of 2 m.  The designations 
used in the table are as follows: Pi is the 
probability that the mathematical expectation of 
spot area β1 with the standard deviation σ exceeds 
the area S at which the density of the fallout is 
larger than the ultimate value q0 on the territory 
considered; the probabilities Pi for i = 1, 2, 3, 4 
are obtained for S = 1.5⋅108, 8.3⋅107, 1.4⋅107, and 
4.0⋅106 m2, the corresponding values q0 (g/m2) 
equal 1.0⋅10$6, 5.0⋅10$6, 5⋅10$5; 4.1⋅10$5.  One can 
 

see that the decrease of S results in an increase the 
value of Pi.  The decrease of β1 decreases Pi.  The 
calculations also demonstrate that the decrease of 
the standard deviation of spot area σ at a constant 
value of β1 leads to an increase of the probability 
Pi.  When S = β1, the probability Pi is equal to 
0.5.  The values of the probabilities Pi are quite 
realistic what makes an additional proof of the 
results obtained in the paper. 
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