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Simple method for processing of time-integrated broadband spectra of 

intracavity laser absorption is developed that allows one to obtain the values of 

collisional widths and relative intensities of isolated homogeneously broadened 

lines based on two parameters of a spectrogram measured as well as on the width of 

the instrumental function of a classical spectrometer used for recording intracavity 

absorption spectra. 

 

Up to date a great number of absorption line 
centers of different gases have been measured using the 
method of intracavity laser spectroscopy (ICLS)1,2 that 
allowed a number of inverse problems of molecular 
spectroscopy aimed at estimation of intramolecular 
force field constants to be solved.3,4  At the same time, 
ICL spectra also contain very important information 
about collisional widths and intensity of lines, which, 
as a rule, is not used, because in order to retrieve it one 
should use either a very complicated procedure for 
spectrum processing5 or an extremely sophisticated 
experimental technique allowing the recording of a 
series of instantaneous spectra during a pulse.6,7  The 
procedure already existing for processing of time-
integrated spectra1,11 has been developed to handle 
relatively narrow spectra of a  ruby laser generation.  
Its width is only several times greater than the width of 
an absorption line under study.  That is why this 
procedure is rather complicated too and involves 
different numerical methods. 

This paper proposes a procedure which needs no 
numerical methods.  This procedure is developed to 
process the time-integral ICL spectra, whose width is 
much greater than the width of an isolated Lorentzian 
molecular absorption line.  The procedure is based on 
simple algebraic equations describing the shape of dips 
in selective absorption in the lasing spectra recorded 
using a classical spectrometer.  Using this procedure, 
by measuring relative dip depths and widths, one can 
find the relative intensity and homogeneous 
(collisional) widths of absorption lines, free of the 
influence of the spectrometer instrumental function. 

General principles of this procedure are the 
following: 

1. If the interaction of laser radiation with a 
selectively absorbing medium (molecular gas at a 
pressure near or above the atmospheric one) is assumed 
linear, then the lasing power in the region of selective 
absorption related to the power at the same frequency 

ω without the selective absorption is usually described 
by the modified Bouguer law: 

 
G(ω, t) ∝ exp[$k(ω) ctl/L],  (1) 
 

where k(ω) is the absorption coefficient of the gas 
under study, c is the light speed, t is current time from 
the beginning of lasing, l and L are the optical lengths 
of the absorbing cell and the cavity, respectively.  The 
theoretical calculation8$10 of G(ω, t) yields the 
equation, which differs from Eq. (1) by only the factor 

t at the exponent, that is of small significance from 
the viewpoint of determination of the spectral 
dependence since it enters into the exponent only. The 
experiments6,7 showed the dependence (1) to be 
suitable for quantitative description of ICL spectra 
recorded. 

2. The time-integrated spectrum J(ω) is 
proportional to the integral of G(ω, t) multiplied by 
the factor giving the shape of lasing pulse.  In the 
limiting cases of short and long laser pulses (pulse 
duration, τp, is much shorter or longer than the time 
τ0 ≡ L/[ck(ω)l] characterizing the absorption), as a 
result of integration with the use of rectangular shape 
of laser pulses, the spectrum J(ω) can be presented as 

 
J1(ω) ∝ G(ω, teff),   τp <<  τ0,  (2a) 
 

J2(ω) ∝ [1 $ G(ω, teff)]/k(ω),  τp >>  τ0. (2b) 
 

Numerical calculations show11 that the 
assumptions (2) well suit the quantitative processing of 
spectra when using nonrectangular symmetric pulses 
with the error ≤ 6%.  For the continuous-wave lasing, 
the value τp is replaced by the average duration of 
spontaneously arising wave trains of lasing in the 
vicinity of an absorption line.9  The value teff in 
Eq. (2) is the effective duration of lasing, being of the 
same order of magnitude as τp, which is naturally to be 
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used as the fitting parameter when making a 
comparison with the experiment. 

3. A dip against the background of a broad lasing 
spectrum corresponds to an isolated absorption line of a 
medium inside the cavity (see Fig. 1).  Without loss of 
generality, the continuous lasing spectrum in the 
vicinity of an isolated absorption line can be considered 
a constant value, and its amplitude can be taken as 
unity.  The maximum dip value I, its halfwidth at 
halfmaximum δ, and the depth P2 at the distance 2δ 
from the center are used, in the procedure developed, 
for determining true parameters of the absorption 
coefficient k(ω), and the directly measured parameters 
in such an approach are I and δ. 

 

 
FIG. 1. Dip in the ICL spectrum. 

 

4. The shape of the absorption coefficient k(ω) and 
the instrumental function of a classical spectrometer 
fins(ω) are believed Lorentzian: 

 

k(ω) = 

1
πγ 

S

1 + (ω/γ)2 , fins(ω) = 

1
πγins

 
S

1 + (ω/γins)2 , (3) 

 
where S is the line strength; γ is the homogeneous 
(collisional) line halfwidth at halfmaximum; γins is the 
spectrometer instrumental function halfwidth at 
halfmaximum. 

5. It is seen from Eqs. (1)$(3) that the value of 
the ratio 

 
σ ≡ Scteff l/(πγ L)      (4) 
 
establishes the distinct line between the cases (2a) and 
(2b), namely, at σ < 1 dips in the spectrum will be not 
very deep (0 < I < 0.5), while at σ > 1 they will be 
deep (0.5 < I < 1).  That is why it is worthwhile 
turning from the two limiting cases (2a) and (2b) to 
the general formula that approximates the dip shape 
P(ω) without a marked increase in the error of 
representation throughout the whole range of the dip 
depth: 
 
P(ω) = (1 $ I)[1 $ J1(ω)] + I [1 $ J2(ω)]. (5) 
 

6. Spectrum recording with a classical 
spectrometer leads to convolution of expressions (2a) 
and (2b) with the instrumental function fins(ω), 
Eq. (3), 

J
~
1(ω) = 

1
π 

⌡
⌠

$∞

∞

 

 

dx

(x $ ω)2
 + 1

 exp ⎣
⎡

⎦
⎤$ 

σ
1 + (x/γ)2 , 

τp <<  τ0, (6a) 
 

J
~
2(ω) = 

1
πσ ⌡⌠

$∞

∞

 

 
dx 

1 + (x/γ)2

(x $ ω)2
 + 1

 

⎩
⎨
⎧

⎭
⎬
⎫

1 $ exp ⎣
⎡

⎦
⎤$ 

σ
1 + (x/γ)2  , 

τp >>  τ0. (6b) 
 

In Eqs. (6) and below all values having the 
dimensionality of frequency are measured in the units 
of the spectrometer instrumental function halfwidth 
γins ≡ 1.  As a consequence of an obvious relation, 
following from Eqs. (6a) and (6b): 

 

J
~
2(ω, σ) = 

1
σ ⌡⌠

0

σ

 

 
J
~
1(ω, σ1) dσ1 , (7) 

 

further it is sufficient to calculate only J
~
1(ω, σ). 

Expanding the exponent in the integrand of 
Eq. (6) into a  series and integrating it term-by-term 
using the theory of residues, the following expressions 

for the dip shape P1(ω) = 1 $ J
~
1(ω) can be derived 
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n=1

∞
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g ≡ γ/(1 + γ),  ζ ≡ 1/{1 + [ω/(1 + γ)]2},  m ≤ n,  n ≥ 1, 
 

where ⎝
⎛
⎠
⎞ r

 s
 are the binomial coefficients; [p/q] is the 

integer part of a fraction; 2F2 is a hypergeometric 
function.  When deriving Eqs. (8) and (9), we have 
used the following expression, obtained by the method 
of mathematical induction: 
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For the area S1 of a dip P1 from Eq. (8) we obtain the 
equation 
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where Φ(⋅⋅⋅) is the degenerate hypergeometric function. 

The expressions for the dip P2(ω) = 1 $ J
~
2(ω) 

analogous to Eqs. (7) and (8) can be readily obtained 
from the latter ones by applying the expression (7). 

Let us write the first seven terms of the series (8): 
 

P1(ω)
σZ

 = 1 $ 
1
2
 σ ⎝
⎛

⎠
⎞1

2
 $ 

1
2
 g + Z  + 

+ 
1
6
 σ2 ⎣

⎡
⎦
⎤3

8
 (1 $ g)(1 + 2Z) + Z2  $ 

$ 
1
24

 σ3 
⎩
⎨
⎧

⎭
⎬
⎫

(1 $ g) ⎣
⎡

⎦
⎤5

16
 + 

1
8
 (5 $ g)Z + Z2  + Z3  + 

+ 
1

120
 σ4 

⎩
⎨
⎧
(1 $ g) ⎣

⎡ 35
128

 + 
5
64

 (7 $ 2g)Z +  

⎭
⎬
⎫

⎦
⎤+ 

5
16

 (3 $ g)Z2 + 
5
4
 Z3  + Z4  $ 

$ 
1

720
 σ5 

⎩
⎨
⎧
(1 $ g) ⎣

⎡ 63
256

 + 
21
128

 (3 $ g)Z + 

⎭
⎬
⎫

⎦
⎤+

1
32

 (28 $ 14g + g2)Z2
 + 

3
16

 (7 $ 3g)Z3
 + 

3
2
 Z4

 + Z5  + 

+ 
1

5040
 σ6 

⎩
⎨
⎧
(1 $ g) ⎣

⎡ 321
1024

 + 
21
512

 (11 $ 4g)Z + 

+ 
7

128
 (15 $ 9g + g2)Z2 + 

7
64

 (6 $ g)(2 $ g)Z3 + 

+
⎭
⎬
⎫

⎦
⎤ 

7
8
 (2 $ g)Z4 + 

7
4
 Z5  + Z6  ; (12) 

Z ≡ gζ. 
 

The residual term in Eq. (12) is of the order of 
σ7/40 320.  Assuming it equal, for example, to 0.02, 
for the maximum value of σ at which the expansion 
(12) is accurate to 2% we find σ = 2.6, that allows us 
to describe the dips P1(ω) with the depth I ≤ 0.7. 

Having substituted Eq.(8) and analogous 
expression for P2(ω) into Eq. (5), we obtain the 
representation of the equation for a dip P(ω) as a series 
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7. The maximal depth I of the dip and its 
halfwidth δ are determined from the relations 

 

I ≡ P(ω = 0),   P(ω = δ) = 
1
2
 I, (14) 

 

 

where P(ω) is given by Eq. (13).  Having restricted 
our consideration by the first six terms of the power 
series in σ in Eq. (13), we present the sought 
parameters σ, Eq. (4), and g, Eq. (9), which are 
directly related to the relative line intensity and its 
halfwidth γ, as six$order polynomials in I.  Unknown 
coefficients of these polynomials can be found by 
substituting the latter ones into Eqs. (14) and (13) 
with following expanding the parameters ζ(δ, γ) into 
analogous polynomials, grouping the like terms, and 
sequentially solving the set of two linear algebraic 
equations at different powers of I.  The final result of 
these transformations is 
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δI
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(16) 
With the help of the definition P2 ≡ P(ω = 2δ) 

and Eqs. (13), (15), and (16), we find with the same 
accuracy: 

 

P2 = 
1
5
 I + 

7
25

 I2 + 
420δ2 $ 479δ + 135

3000(δ $ 1)2  I3 $ 

 

$ 
3216δ3 $ 9651δ2 + 6886δ $ 3353

240000(δ $ 1)3  I4 . (17) 

 
8. The order of processing spectrograms like the 

one presented in Fig. 1 is as follows: 
(i) with the orientation to the far wings of the dip 

P(ω), the zero level of the dip P0 ≡ P(ω → ∞) is 
approximately determined, which is, at the same time, 
the level of maximum power Jmax (lasing power 
without a selective absorption); 

(ii) the spectrum is normalized to the value of 
Jmax; 

(iii) the dip center is found, and the values I and 
δ are measured; 

(iiii) the value P2 × Jmax is calculated and plotted 
above the curve P(ω) at a distance 2δ from the dip 
center, and the refined position of the zero level P0 is 
thus determined; 
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(iiiii) steps (ii) $ (iiii) are repeated, and the 
values I and δ obtained are compared with the previous 
ones; if their relative difference is below a preset level 
of error ( ∼ 1$3%), then the substitution of the last 
thus obtained values I and δ into Eqs. (15) and (16) 
gives the sought values of σ and γ. 

As a rule, to reach the level of accuracy about a 
few per cent, one$two iterations following the above$
described scheme of processing are sufficient.  It is easy 
to generalize this order of processing also for the case, 
when the dip background (the value Jmax) linearly 
depends on the frequency (wavelength) of radiation. 

9. In the above procedure for processing ICL 
spectra, the halfwidth γins of the classical spectrometer 
instrumental function was assumed known (and taken to 
be unit). A convenient way for its determination may be 
the previous measurements of dip widths, corresponding 
to the absorption lines under study and recorded at a low 
gas pressure, when the inhomogeneous broadening takes 
place, i.e., the line profile is Doppler one. The point is 

that under room temperature the Doppler line widths kv$, 

where k is the wave number and v$ is the most probable 
speed, in the visible and near infrared regions are of the 
value from 0.03 (λ = 0.35 μm) to 0.006 cm$1 (λ = 2 μm). 
At the same time, typical values of halfwidth γins are from 
several hundredth to several tenth of reciprocal 
centimeter, that can be several times greater than the 
Doppler widths. Thus, the value γins can be estimated 
with a sufficient certainty. The scheme to find it is the 
same as the above one to find γ, only with the 
substitution of the Doppler line profile 

 

k(ω) = S/( π k v$)exp[$(ω/kv$)2]  (18) 
 

for the Lorentzian one. 
In the experiments performed specially to find γins, 

by varying the gas pressure in the measuring cell, every 
time it is possible to restrict the consideration to small 
dip depths, i. e. the case τp << τ0.  In this case the 
expression for the dip shape has the form 

 

P1(ω) = 1 $ 
γins

π  ⌡⌠

$∞

∞

 

 

dx

(x $ ω)2 + γins
2  exp($σe$x2

); (19) 

 

σ = Scteff l/( π k v$L) .  
 

Expanding the exponent in Eq. (19) into a series 
and integrating it term-by-term, we obtain 

 

P1(ω, γins, σ) = $ ∑
n=1
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1 + 
2i

π
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z

 

 
et

2
 dt  , (20) 

 

where w(z) is the probability integral of the complex 
argument, and Re w(z) is the Voigt profile. 

The calculated dependence of γins on the halfwidth 
δ of the profile (20) in the interval of the dip depth 

I ≤ 0.2$0.3 and halfwidths δ ≥ 1.5 kv$ can be well 
approximated by the following equation 

 

γins = δ2.01 $ 0.638 $ 0.234 , (21) 
 

where the values of γins and δ are expressed in terms of kv$. 
The procedure developed was applied to processing 

of experiment12 on measuring the collisional widths and 
relative intensities of ICL absorption lines of water 
vapor in atmospheric air in the range 1.12$1.16 μm 

with the laser on F2
$: LiF colors centers. 
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