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Asymptotic representations of the amplitudes of the partial waves in the Mie 

series are obtained without any special functions. These representations are useful 

for description of the optical fields inside spherical aerosol particles and in the 

plasma spherical inhomogeneities. One can use the relationships obtained in the 

medium range of the diffraction parameter values, namely, for the close values of 

the product of the diffraction parameter by the complex refractive index and of the 

number of a partial wave. The comparative analysis is carried out of the 

amplitudes calculated by the asymptotic and Mie formulas. The asymptotic 

formulas obtained are most convenient for testing algorithms for calculating the 

amplitudes constructed using the exact Mie formulas. 

 

Calculations of the optical fields using the Mie 
theory make it possible to reveal the mechanisms of 
clearing up water aerosol by a laser beam and possible 
ways of development of the optical breakdown in the 
aerosol medium and to study the optical field 
intensities inside the plasma inhomogeneities. A number 
of difficulties connected with the problem of 
calculating the Rikkati-Bessel functions of the first 
order (RBF1) with a complex argument in the 
intermediate range of the diffraction parameter, 
namely, for n ≈⏐mρ⏐, occur in the techniques for 
calculating the coefficients of the Mie series.1 The 
standard techniques for calculating the spherical RBF1 
with the complex argument, such as descending and 
ascending recursion, require either a large computer 
memory and elaborate normalizing or an extended 
many-digit computer word, for example, to correctly 
calculate the RBF1 with the imaginary part greater 
than 30, a 16-byte representation of complex numbers is 
required.2 However, it is possible to calculate the 
RBF1 for calculating the partial wave amplitudes in 
the range n ≈⏐mρ⏐ using less cumbersome procedure 
based on the asymptotic expressions.3 The necessity and 
fruitfulness of such an approach are noted in Ref. 1. 

In this paper the asymptotic representations of the 
partial wave amplitudes of the Mie series describing the 
optical fields inside the spherical particles are obtained 
using the asymptotic representations of the RBF1.3 The 
expressions obtained make it possible to effectively test 
the process of calculation of the amplitudes by the exact 
Mie formulas and to test other algorithms (see, e.g., 
Refs. 2, 4, and 5) in the critical calculation range n ≈⏐mρ⏐. 

Writing the expressions for coefficients in the form 
convenient for calculations, we have6: 
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where m is the complex refractive index of the 
particulate matter, ρ is the diffraction parameter of a 
particle, ξ

n
(ρ) and ξ

n
′(ρ) are the Rikkati-Bessel 

function of the third kind and its derivative, ψ
n
(mρ) is 

the Rikkati-Bessel function of the first kind,7 and i is 
the imaginary unit. To calculate the RBF1,  
let us use the asymptotic Meissel series3 describing  
the RBF1 for n ≈⏐mρ⏐: (mρ$n+1/2) = o(mρ)1/3,  
$π < arg(mρ) < π. Taking into account two first terms 
of the series, we have for RBF1: 
 

ψ
n
(mρ) = 0.56 (mρ)1/6 + 0.52 (mρ)1/6 $ 

 

$ 0.52 (n + 1/2) (mρ)$1/6. (3) 
 

The use of asymptotic Debye formulas7 for 
calculating RBF3 and its derivative in Eqs. (1) and (2) 
makes it possible to write them without special 
functions, and for ⏐m⏐<1 we obtain: 
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where τ is the variable calculated from the expression 
cos(τ) = (n + 1/2)/ρ and ξ

n
(ρ) has the form7: 

 

ξ
n
(ρ) = exp ($ i ρ f + π/4)/ sin(τ) , (6) 

 

where 
 

f = sin(τ) $ τ cos(τ). 
 

Figure 1 shows relative deviation of the partial 
wave amplitude calculated by Eqs. (1) and (2) (curve 
1 for d

n
 and curve 2 for c

n
) taking into account Eq. (3) 

from the exact value of the partial wave amplitude 
calculated by the recurrence formulas.2 Calculations 
have been done for water aerosol, namely, for the 
refractive index of water at the wavelength of 1.06 μm 
m = 1.39 $ i 1.49 10$6. 

 

 
 

FIG 1. 
 

 
FIG. 2. 

 

Figure 2 shows the deviation of the partial wave 
amplitude calculated by Eqs. (4) and (5) (curve 1 for 
d

n 
and curve 2 for c

n
) taking into account Eq. (3) from 

the exact value of the partial wave amplitude  
calculated by the recurrence formulas of the descending 
recursion.8 Calculations have been done for the plasma 
inhomogeneities with the refractive index  
m = 0.5 $ i 10$3. 

Thus, the relative deviation of the partial wave 
amplitudes from the values calculated by the recurrence 
formulas does not exceed 0.02 (Fig. 1) and 0.2 (Fig. 2) 
in the index range from 1315 to 1323 and from 484 to 
504, respectively. Hence, it is possible to use the 
formulas obtained for testing all possible algorithms for 
calculating the partial wave amplitudes. To decrease 
the relative deviation and to extend the index range, it 
is necessary to take into account three and more terms 
in the Meissel asymptotic expansion when calculating 
RBF1. 
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