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We discuss here general principles of a neuronetwork functioning.  A way for 

determining the correction vector for the weighting factors matrix is described 

based on linear reconstruction algorithm. An algorithm for RNS-processor optimal 

structure synthesis is proposed. 
 

INTRODUCTION 
 

The conceptions of using neural networks and 
nontraditional arithmetic based, for instance, on the 
residue-number-system (RNS) seem to be a very 
promising direction of investigations capable to lead to 
essential changes in the principles of creating computer 
systems for processing the aerospace viewing 
information. 

Neural networks are often considered as one of the 
directions in developing artificial intellect and as an 
alternative to digital computers and algorithmic 
programming in solving problems of ecological 
monitoring. These definitions cannot be treated as 
absolutely correct, but preliminary investigations make 
it possible to judge that neural networks and the RNS-
arithmetic can drastically change the situation when 
digital processing and algorithmic programming do not 
provide serious achievements. According to Ref. 11, 
some university laboratories (Illinois, California) and 
corporations (INTEL, G.ELECTRIC) actively conduct 
scientific research aimed at reduction of methods and 
means of neural networks to such serious applied 
problems as pattern recognition and reading of symbols. 

In perspective, such an approach will give an 
essential increase in functional possibilities of computer 
design which must include various methods of 
information processing. 

 

1. GENERAL PRINCIPLES OF 
NEUROCOMPUTER NETWORK OPERATION 

 

Since many problems solved by a neurocomputer 
are connected with the processing of prime pithy 
information such as images, simple models of biological 
systems are chosen as architectural principles for 
constructing neural networks. 

Neural network is an adaptive network which 
consists of inputs, outputs, and processor elements 
(PE) and is capable to minimize the cost function of 
the result desired. 

Practically any type of coded information is 
permissible at the inputs and outputs depending on an 
applied problem. 

PE œweighsB the input signal (ri), i.e., finds its 
synoptic weight (ri Wi) what gives the network a 
possibility to map input data at the output adequately 
and accurately; then the data are summed and pass 
through the NEURON (Fig. 1a). The neuron executes 
the function F(ri Wi) which can be linear, step-wise, 
or nonlinear sigma-shaped and it is chosen so that rapid 
convergence is achieved and the finite result R is 
obtained (Fig. 1b). 

 

 

 
 

FIG. 1.  Processor element structure (a) and sigma-
shaped neuron function (b). 

 
The networks already existing have two key 

architectural characteristics: every input is connected  
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with every PE and the outputs of one level are inputs 
the next level in a network with more than one level 
(Fig. 2). 
 

 
FIG. 2.  Multilevel neural network structure 
 

In order to find correct weights, one uses the 
training of a neural network, namely, error and trial 
method. A successful training is possible if the data 
have a correct format and cover the required number 
ranges, i.e., training data must include the whole range 
of the initial data for the network.  Statistical analysis 
algorithm realized in a neural network will approximate 
a curve with the data interpolation in a domain not 
coinciding with the data values used in the network 
during the training.  In other words, the data are 
œpumpedB through the network during training process 
in order to catch correct values of synoptic weights. 
After training all input data can be mapped into a 
correct output values. 

From the viewpoint of mathematical modeling, 
neural network is a dynamic system which can be 
simulated as a system of coupled differential equations. 
Such a system is potentially unstable because small 
oscillations of the weighting factor can lead to 
appearance of uncontrolled generation, spikes, standing 
and running waves and tend to a chaotic state. 

If a network with its state changes is considered as 
an energy surface, the stable states will correspond to 
energy minima. Every stored pattern of the network, 
e.g. data file, corresponds to a stable  state or a local 
minimum. This pattern is associated with an input 
pattern; so entering of the latter into the neural 
network will cause the network’s choice of the 
corresponding stored pattern, similarly to the 
associative memory. 

However, a complication occurs that in different 
models several energy minima can correspond to one 
and the same input pattern, and that means that one 

not necessarily obtains a correct output result by 
processing input data. 

In order to decrease the probability of a false 
computer operation, one develops or uses already 
existing specialized algorithm of neural network 
training for each class of the problems to be solved.  At 
present the training B PE (B ack Propagation of Error) 
algorithm 10 is most spread, its accuracy being 94.1%. 
The network training with this algorithm starts with 
the assignment of small random values to synoptic 
weights. For the first set of input vectors one obtains 
wrong output vectors. However, since correct values of 
the output vectors are known, one can compute 
differential values which are said to be correcting 
coefficients or delta-mistakes (Q). 

The obtained Q-values for each synoptic weight 
Wi propagate backward along the network. 

With their passage through the neural network 
levels, the values corresponding to every synoptic 
weight W change. Finally, the matrix of synoptic 
weights 

 

 

Wij = 

W11, W12, ... , W1n

W21, W22, ... , W2n

. . . .
Wm1, Wm2, ... , Wmn

 , (1.1) 

 

where i is the nth synoptic weight of the jth level, and 
j is the mth neural network level, is fitted so that the 
network is capable to compute correct output vector for 
the first input vector. These values of weight factors 
are used in processing the second set of input vectors. 

The process is repeated, and the matrix of synoptic 
weights Wij is modified again and again until the 
optimal configuration for the whole data field is 
obtained. 

In order to provide higher accuracy of calculating 
the matrix Wij and depending on the class of problems 
solved, more sophisticated training algorithms are often 
used.10  The below algorithms of training neural 
networks are among most widely spread: 

LVQ $ Learning Vector Quantization, 95.7%; 
STLVQ $ Shift-Tolerant Learning Vector 

Quantization, 98%; 
RB F $ Radial B asis Functions, 99%; 
RCE $ Restricted Coulomb Energy, 99%; 
B DT $ B ias Data Training, 99%. 
Two basic conceptions of neural network 

construction, namely, the establishment of the links set 
and execution of iterations for adequate mapping of the 
input parameters to the output ones cause greater 
intensity of calculations necessary for solving certain 
problems.  Therefore, whenever possible one tries to 
reduce the neural network after its initial configuration 
is determined. B ut the advantages reached by 
customizing and reduction of the network are usually 
very limited. So the computer hardware for speeding up 
computations is very often required. 
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2. DETERMINATION OF THE CORRECTION 
VECTOR (Q) USING LINEAR RECONSTRUCTION 

ALGORITHM 
 

Tough restrictions to the allowable time for neural 
network learning and information processing, big bulks 
of transferred information, and rather small values of 
the noise factor (Q-mistake) demonstrate the 
expedience of applying the linear reconstruction 
algorithm.  The convolution of actual readings with the 
weight function of the correcting element is the central 
and most laborious operation of linear algorithms.2 

The properties of algebraic structures over which 
the convolution is calculated are of great importance 
for synthesizing fast convolution algorithms. In the case 
under study, we propose to consider the convolution 
over the residue class rings Zm. These algebraic 
structures seem to be the most optimal for the neural 
network training and operation. 

A linear convolution of an L-point sequence {ri} 
with an M-point sequence {Wi} yields a dilated 
K=L+M+1- point sequence {Si}. 

Compactly, a one-dimensional linear convolution 
S=r⊗W of two integer-valued sequences {ri} and {Wi} 
has the form 

 

S(x) = r(x) W(x),  (2.1) 
 

where the degrees of polynomials are: deg r(x) L $ 1, 
deg W(x) M $ 1, deg S(x) L + M $ 2. 

It is shown in Ref. 2 that the coefficients S of the 
polynomial S(x) can be obtained from the expression 
 

∑
i=0

N$1

 Si x
i = ∑

i=0

L$1

 ri x
i ∑

m=0

M$1

 Wm xm, (2.2) 

 

from which we have 
 

Si = ∑
n=0

N$1

 rn Wi$n, (2.3) 

 

where ri are discrete quantized readings from the first 
integer-valued sequence, e.g., the readings of the input 
signal; Wm are discretes of the second sequence, e.g., 
transmission characteristics of the synoptic weight; 
i, n = 0, 1,..., N; l = 0, 1, ..., L$1; m = 0, 1, ..., 
M $ 1. 

In order the coefficients Wi-n be always 
meaningful, one should periodically, with the period N, 
extend their values.  This means that if the index  
(i$n) does not belong to the  interval 0 < i $ n < N $ 1 
one should add or subtract a number multiple of N for 
the inequality 0 < i $ n + mN < N $ 1 to be fulfilled. 

Then one can use the values  
 

Wi$n ± mN = W(i$n) (mod N) 
 

when calculating the convolution. 
The convolution S=r⊗h obtained in such a way is 

said to be a cyclic convolution and can be written in a 
polynomial form as a residue of a linear convolution to 
the polynomial X $ 1 modulus 

 

S(x) = r(x) W(x) (mod x $ 1) (2.4) 
 

or  
 

∑
i=0

N

 Si x
i = ∑

i=0

N

 ri x
i Wi x

i (mod x $ 1), (2.5) 

 

what implies 
 

Si = ∑
n=0

N

 rn W(i$n) (mod N).  (2.6) 

 
The sequences differing only by a cyclic 

displacement will correspond to the expression  
W(i$n)(modN) for different values Si, n = 0, 1, ..., N$1. 
Therefore, the calculation of the difference  
(i$n)(mod N) results in periodic permutations of the 
elements Wi of the sequence of readings. This cyclicity 
is most apparently seen if the convolution is written in 
the matrix form: 
 

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤

S0

S1

.

.

.
SN$1

 = 

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤

W0  WN$1 ... W1

W1 W0 ... W2

. . . .

. . . .

. . . .
WN$1 WN$2 ... W0

 × 

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤

r0
r1
.
.
.

rN$1

 ,  (2.7) 

 

where  

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤

S0

S1

.

.

.
SN$1

 = S is the column vector of the 

convolution results; 

⎣
⎢
⎡

⎦
⎥
⎤

W0 . . . W1

. .

. .

. .
WN$1 . . . W0

 = W is the 

matrix of readings of the synoptic weight transmission 

characteristics; [r0 r2 ... rN$1]
T = R is the column 

vector of the current data sequence. 
If the cyclic convolution is used for calculating 

linear convolution, the influence of the periodicity 
should be compensated. For computing the whole 
sequence {Si} by a cyclic convolution the length of the 
latter should be equal to N points. B esides, the 
sequences {ri} and {Wi} should be continued up to N- 
point sequences. For this purpose it is sufficient to add 
the corresponding number of zeros to {ri} and {Wi} and 
to construct the sequences 

 

 

ri = 
⎩
⎨
⎧

>

ri, 0 ≤ i ≤ L $ 1,
0, L ≤ i ≤ N $ 1;

 (2.8) 

 

Wi = 
⎩
⎨
⎧

>

Wi, 0 ≤ i ≤ M $ 1,
0, M ≤ i ≤ N $ 1.

 (2.9) 
 

Then the values of cyclic and linear convolutions 
coincide on the interval 0<i<N-1, i.e., in the 
polynomial form, 
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S 

′(x) = r ′(x) W 

′(x) (mod x $ 1) = 
= r(x) W(x) = S(x).  (2.10) 
 

In order to calculate the coefficients of the 
convolution over the residue class ring Zm 

, one uses the 
expression  

 

Si = 
⎝
⎜
⎛

⎠
⎟
⎞

∑
n=0

N$1

 rn Wi$n  (mod m), (2.11) 

 

 
for the linear convolution and  

 

Si′ = 
⎝
⎜
⎛

⎠
⎟
⎞

∑
n=0

N$1

 rn W(i$n)(mod N)  (mod m) (2.12) 

 

for the cyclic convolution, respectively. 
The operation to the modulus m is unnecessary and 

all the calculations are performed by laws of usual 
arithmetic until the modulus m is greater than all the 
integers used in calculations. 

Otherwise, the Zm-arithmetic, i.e., the arithmetic 
to the modulus m comes into force. The values S(S’) 
obtained in such a way allow one to determine the 
correction vector [Qij] for the weighting coefficient 
matrix [Wij] rather simply on the basis of the formulas 
(1.1) and (2.7) what makes it possible to create 
efficient specialized numerical algorithms of the neural 
network training. 

 

3. THE ALGORITHM OF OPTIMAL RNS-
PROCESSOR SYNTHESIS 

 

To calculate cyclic convolution, the modulus m 
can be chosen so that there are sufficiently convenient 
convolution procedures in the ring Zm. 

It is desirable to use the advantages of the residue 
number system (RNS) for these purposes. RNS is a 
number system in which numbers are represented as a 
set of non-negative residues a1, a2, ..., an by mutually 
prime moduli (bases) m1, m2, ..., mn: 
 

A = {ai (mod m) = 1, n}.  (3.1) 
 

The condition of pair-wise mutual simplicity of the 

chosen moduli {mi} = 1, i = 1, n , provides an 

unambiguous representation of the number A in the 
range D which is equal to the product of these moduli 
 

D = Π
n

i=1
 mi. (3.2) 

 

Since the bases {mi} are mutually independent by 
definition, there exists the following isomorphism of 
the direct sum 

x ⋅ y = ∑ ⊕ (x ⋅ y) (3.3) 

 

for making the arithmetic operations ⋅ {+, −, ×}. This 
isomorphism defines a one-to-one correspondence 
between a positive integer a < m and a residue vector 
(a1, a2, ..., an).  The isomorphism enables one to 
process quantized video data in parallel and 
independently in every of the rings Zmj by laws of the 
RNS-arithmetic. The residue 

 
Sij = Si (mod m) (3.4) 
 
is calculated in every ring Zmj and the integer result of 
the convolution, i.e. the result in the ring is obtained 
by formula 
 

Si = 
⎝
⎜
⎛

⎠
⎟
⎞

 ∑
i=1

n

  Sij Mj Nj  (mod m), (3.5) 

 
where Mi = mi/mj, MjNj = 1(mod m). 

Thus the calculation of the convolution can be 
realized both over the ring Zm and over the direct sum 
of rings Zm1 

+ Zm2 + ... +Zmn
. Figure 3 shows the 

calculation scheme for the convolution of the sequences 
{ri} and {Wj} over the ring Zm and over the direct sum 
Zm1 + Zm2 + ... +Zmn

 of residue class rings by pairwise 

prime moduli m1, m2, ..., mn. 
 

 
 

FIG. 3.  Scheme of calculation of the convolution S = r 
W over the direct sum Zm

1
 + Zm

2
 + ... +Zmn

 

 

So it is assumed that the arithmetic operations can 
be executed over several finite rings and the result of 

the direct sum can be mapped into a larger modulus Π
n

i=1

 mi ring. All the calculations are independent of others,  
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so they can be done in parallel what just takes place in 
the RNS-processor, i.e., the concurrence principle is 
realized almost completely. 

The structure of the RNS-process is extremely 
simple; it is a regular matrix where the computations 
are reduced to a simple choice of the result from the jth 
node of the table (matrix) analyzed. 

B y the jth node we mean the part of the matrix 
where the relation  

 

Ci =Φ(a, b)  
 

takes place with a and b belonging to the same range, 
i.e., D ≤ a2. 

It is obvious that in the general case the number of 
nodes K of the matrix is determined by  

Ki = m2
i + mi, for the whole set of moduli {mi} 

 

K = ∑
i=1

n

 (m2
i + mi). (3.6) 

 

Here each possible combination of the input values 
is realized, while the outputs of nodes are united by the 
right-hand side Φ. 

The main disadvantage of the table version of the 
RNS-processor is a great increase in the volume of the 
equipment needed (the node number K) with increasing 
moduli values {mi}. 

In this connection, there arises a problem on 
optimal choice of {mi} providing the hardware 
expenditures minimization. 

Analysis of existing criteria of the moduli set {mi} 
estimation performed by the author in Ref. 3 enables 
one to formulate possible approaches to the choice of 
moduli sets with the properties given beforehand and to 
develop practical methods of choosing the set {mi} 
optimal from the viewpoint of minimizing costs. 

It is known that the amount of hardware for 
constructing the RNS-processor depends on the number 
of bases and their values. B esides, if the terms K and D 
in Eq. (3.6) correlate, the optimal amount of hardware 
can expressed by some function Kopt=f(nmax, V), where 
V is the coefficient of range overlapping. 

If one turns to Eq. (3.2), it is now expressed in 
the form 

 

D = 
⎝
⎛

⎠
⎞ Π

n

i=1
 mi  V, (3.7) 

 

therefore, if one of the moduli m from the initial set 
{mi} is divided by V, the set {mi} will overlap the range 
D at V≈1. 

Let mn be chosen as a modulus to be diminished. 
This is caused by the fact that this base has the largest 
weighting coefficient in Eq. (3.2). 

Since mn can be only integer, the obtained base m 

′n 
should be rounded up to the higher integer, i.e., 
 

m 

′n = ]mn/V[. (3.8) 
 

B esides, m 

′n should satisfy the condition of pair-
wise simplicity 

 
(mi, mj) = 1,  where i, j ∈ Z. (∗). 
 

If m 

′n does not satisfy the condition (∗), it should 
be increased by one until this condition is fulfilled. 

Thus, the obtained set {m1 + m2 + ... + m 

′n} will be 
optimal for D in the sense of hardware costs. 

The algorithm of choosing optimal modulus sets 
{mi} of the RNS-processor is as follows: 

1. Assume the operation range D of the RNS-
processor. 

2. From the set {mi} of prime numbers, starting 
from the third, choose such that satisfy the condition  

 

Π
n

i=1
 mi > D. 

 

3. Find the coefficient of relative overlapping from 
the condition  
 

V = 
⎝
⎛

⎠
⎞ Π

n

i=1
 mi /D. 

 

4. Divide the largest base mn from the set {mi} by 
V and round the result to the higher integer  
 

m 

′n = ]mn/V[. 
 

5. Test m 

′n for the fulfillment of the condition of 

pair-wise simplicity (mn, m 

′n) = 1. 

6. The condition (mn, m 

′n) = 1 is satisfied: 
a) if yes, the optimal set is found; 

b) if no, increase m 

′n by 1 until the condition 
is satisfied. 

The proposed algorithm of choosing the moduli set 
{mi} is formulated from the viewpoint of the standard 
RNS-processor synthesis. 

In order to estimate the amount of hardware and 
its optimization quantitatively in choosing the optimal 
{mi}, the coefficient H is mathematically defined in 
Ref. 4. It is considered as the ratio of the node 
(processor elements of the matrix) number Ks of the 
synthesized RNS-processor to that of the conventionally 
ideal RNS-processor (Kid) 
 

H = 
Ks

Kid
 = 

∑
i=1

n

 (m2
i + mi)

n ⋅ D1/n (1 + D1/n)
 . (3.9) 

 

CONCLUSION 
 

The numerical experiments performed in Ref. 4 
demonstrate that the proposed algorithm of the RNS-
processor synthesis allows one to design a substantially 
optimal neural network from the viewpoint of hardware 
minimization and to estimate quantitatively the 
hardware costs. 
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B ut it seems to the author that optimization of 
the RNS-processor structure can be extended if the 
multistage residue number system (RNS-arithmetic) is 
applied. 
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