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It is proved using the momentum method that under some limitations the 

pupil function can be unambiguously determined, accurate to insignificant complex  

constant, from the intensity distribution over the volume containing focal plane.  

New momentum relationships are obtained that allow identification of the phase 

distortions by means of an adaptive mirror. 
 

One of the central problems in adaptive optics is 
the problem on determining the wave front (WF) that 
forms image in an optical system.  Many methods have 
been proposed for its solving, and among them the 
method that uses only the information on the intensity 
distribution I(x, y) in the plane of image recording. 

Its main advantage is simple performance.  If one 
describes the wave field by the pupil function1 
G(ξ, η) = P(ξ, η) exp(iφ(ξ, η)), where the function 
P(ξ, η) describes the field amplitude attenuation in the 
output pupil Ω, and the function φ(ξ, η) is the phase 
distortion of the field, then the problem is reduced to 
determining φ(ξ, η) from I(x, y) with known or 
unknown function P(ξ, η).  Correspondingly this is 
called the phase (PP) or wave (WP) problem of optics. 

Two groups of papers can be isolated here.  The 
first one is devoted to solving PP using I(x, y) from a 
point source.  Authors of Ref. 2 have studied the 
solution of PP for one-dimensional case and have shown 
that it has no a unique solution.  Iteration algorithm 
for solving PP for a two-dimensional case is proposed 
in Ref. 3, and it is shown that it converges (although 
slowly) for quite a wide set of functions φ(ξ, η) except 
for some subset of the zero measure.  Then the 
qualitative question on whether is the information on 
phase φ(ξ, η) contained in the distribution I(x, y) 
sufficient or not in PP is answered for the two-
dimensional case important for applications. 

The approach to solving PP connected with the 
representation of the phase by the finite part of the 
series over a system of basis functions seems to be 
natural.  Then PP is reduced to determining the 
coefficients of the series I(x, y).  The coefficients are 
determined based on the condition of minimization of 
the discrepancy between the measured intensity and 
calculated by means of the diffraction integral.  
However, the numerical simulation of solution of PP in 
such a statement gives quite good result,4 but only at 
small φ.  An attempt to extend the applicability of such 
an approach to moderate values of φ has led to solving 
PP using the intensity distribution not over one but 
over several parallel planes,5 i.e., one can say about 

solving PP using the three-dimensional image 
containing the focal plane. 

The second group of papers deals with solution of 
WP using the distribution of intensity from an 
arbitrary extended source.  Different approaches to 
solving it were discussed in Ref. 6.  Let us note the 
momentum method,7,8 where the intensity distribution 
I(x, y, z) over the image space is replaced by the 
distribution of the planar momenta: 
 

Mst(z) = ⌡⌠
 
    ⌡⌠
 
 I(x, y, z) xs yt dx dy . (1) 

 
Although it can happen that the momenta of the 

high order do not exist, some of their derivatives 
dnMst(0)/dzn exist18 and are closely related to the 
phase φ gradient. 

Based on the momentum method, we prove in this 
paper that the volume intensity distribution I(x, y, z) 
unambiguously solves WP, and we obtain the 
momentum relationships based on the Parseval equality 
in a simpler way than in Ref. 8.  In addition, new 
momentum relationships are obtained that can be used, 
together with the active methods of reconstruction of 
the phase,6 for solving WP. 

 
MOMENTUM RELATIONSHIPS 

 
An invariant imaging optical system is described 

for the incoherent radiation by the convolution1: 
 

I(x, y) = ⌡⌠
 
    ⌡⌠
 
 h(x $ x0, y $ y0) I0(x0, y0) dx0 dy0 , (2) 

 
where I(x, y) is the intensity at the point (x, y) of the 
image (measurement) plane; I(x0, y0) is the intensity at 
the object plane point, which has a paraxial image at 
the point (x0, y0); h(x, y) is the point spread function.  
If (x, y) are the optical coordinates in the image plane, 
and (ξ, η) are the relative coordinates of the point in 
the output pupil plane, then1 
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h(x, y) = *g(x, y)*2, 

g(x, y) = ⌡⌠
 
    ⌡⌠
 
 

Ω

G(ξ, η) exp ($ i (xξ + yη)) dξ dη. 

 
Let us suppose that P(ξ, η) > 0 is a function limited on 

Ω, and the function φ(ξ, η) ∈ W2
1 (Ω), the Sobolev 

function space9 on Ω. 
Let us derive the momentum relationships by 

passing to the limit and supposing for the beginning 
that P and φ are quite smooth functions, for which the 
momenta considered below exist.  Let us substitute 
Eq. (2) for I into Eq. (1), then 

 

Mst = ⌡⌠
 
    ⌡⌠
 
 x

 s y t × 

× 
⎝
⎜
⎛

⎠
⎟
⎞

⌡⌠
 
    ⌡⌠
 
 h(x $ x0, y $ y0) I0(x0, y0) dx0 dy0  dx dy , 

 
and after the substitution x = (x $ x0) + x0, y = (y $ 
$ y0) + y0, we obtain 
 

Mst = ∑
k=0

s

 ∑
l=0

t

 Ck
s C

l
t × 

×
⎝
⎜
⎛

⎠
⎟
⎞

⌡⌠
 
   ⌡⌠
 
 (x $ x0)s$k (y $ y0)t$lh(x $ x0, y $ y0) dx dy  × 

× 
⎝
⎜
⎛

⎠
⎟
⎞

⌡⌠
 
    ⌡⌠
 
 x0

s$k y0
t$l I0(x0, y0) dx0 dy0  = 

= s! t! ∑
k=0

s

 ∑
l=0

t

 
Hs$k, t$l

(s $ k)! (t $ l)!
 
Nkl

k! l!
 , 

 

where Hst = ⌡⌠
 
    ⌡⌠
 
 x

s yt h(x, y) dx dy;  

Nst = ⌡⌠
 
    ⌡⌠
 
 x

s
0 y

t
0 I0(x0, y0) dx0 dy0 are the momenta of 

the functions h(x, y) and I0(x0, y0).  In particular, 
M00 = H00N00. 

Assuming that mst = 
1

s! t!
 
Mst

M00
, hst = 

1
s! t!

 
Hst

H00
, 

nst = 
1

s! t!
 
Nst

N00
, we obtain the momentum model of the 

image formation 
 

mst = ∑
k=0

s

 ∑
l=0

t

 hs$k, t$l nkl . (3) 

 
Let us express the momenta hst in terms of the 

pupil function G.  From the Parceval equality, we have 
 

Hst = ⌡⌠
 
    ⌡⌠
 
 x

s yt *g(x, y)*2 dx dy = ⌡⌠
 
    ⌡⌠
 
 (x

s g(x, y)) × 

 

× (yt g(x, y))* dx dy = 
4 π2 ($ 1)t

is+t  × 

× ⌡⌠
 
    ⌡⌠
 
 (G G0)(s) (G G0)*(t) dξ dη, 

 

where asterisk denotes the complex conjugation; (s) and 
(t) are the signs of the order of derivatives with respect 
to ξ and η, respectively; G0 = exp($iu(ξ2 + η2)/2) is the 
phase factor that has been introduced here to take into 
account the influence of the optical coordinate u, 
proportional to the coordinate z, on the hst and mst 
moment distributions. Then 
 

hst = 
1

s! t!
 
($ 1)t

is+t  × 

× ⌡⌠
 
    ⌡⌠
 
 (G G0)(s) (G G0)*(t) dξ dη/

⎝
⎜
⎛

⎠
⎟
⎞

⌡⌠
 
    ⌡⌠
 
 P

2 dξ dη . (4) 

It is easy to check the validity of expressions for partial 
derivatives with respect to ξ: 

 

G′0 = γ ξ G0, G′′0 = (γ2 ξ2 + γ) G0, 
 

G(n)
0  = (γn ξn + G2

0 γ
n $ 1 ξn $ 2 + 

+ Gn γn $ 2 ξn $ 4 + ...) G0, (5) 
 

where γ = $ iu; C2
n is the number of combinations; Cn is 

the coefficient determined by the recurrence formula: 

C3 = 0, Cn = Cn$1 + 3 Cn$1
3  for n ≥ 4; ellipses designate 

the terms proportional to γ to lower powers; 
 

G′ = (P′ $ iP φ′) exp (iφ), 

G′′ = [(P′′ $ P φ′2) + i (2 P′ φ′ + P φ′′)] exp (iφ). (6) 
 

Analogous expressions can be obtained for the partial 
derivatives with respect to η. 

Taking into account the Leibnitz formulas and 
Eqs. (5) and (6), one can write the derivative of the 
product (GG0)(s) with respect to ξ in the form: 

 

(G G0)(s) = G G(s)
0  + Cs $ 1

s
 G′ G(s $ 1)

0  + 

+ Cs $ 2
s  G′′ G(s $ 2)

0  + ∑
k = 0

s $ 3

 Ck
s
 G(s $ k) G(k)

0  = 

= (as γs + as $ 1 γs $ 1 + as $ 2 γs $ 2 + ...) exp (iφ) G0, 
 

where 
 

as = Pξs; 
 

as $ 1 = Cs $ 1
s

G′ ξs $ 1 + PC2
s
 ξs $

 2 = G′(ξs) + P(ξs)′′/2; 
 

as $ 2 = Cs $ 2
s

G′′ ξs $ 2 Cs $ 1
s

C2
s $ 1G′ ξs $ 3 + PCs ξs $

 4 = 

= P Cs ξs $ 4 + G′′(ξs)′′/2 + C′(ξs)′′′/2. 
 

Similarly written can be the expression for the 
derivative with respect to η: 
 

(GG0)(t) = (bt γt + bt $ 1 γt $ 1 + 
 

+ bt $ 2 γt $ 2 + ...) exp (iφ) G0. 
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Supposing γ = $iu, we obtain 
 

(G G0)(s)
 (G G0)*(t) = it + s ($ 1)s

 (as us + i as $ 1 u
s $ 1

 $ 

$ as $ 2 us $ 2 + ...)(b*
t  ut

 $ i b*
t $ 1 ut $ 1

 $ 

$ b*t $ 2 ut $ 2
 + ...) = it + s

 ($1)s
 [as b*t  us + t

 $ i (as b*t $ 1 $ 

$ as $ 1 b*
t)us + t $ 1$ (as b*

t $ 2 $ as $ 1 b*
t $ 1 + 

+ as $ 2 b*
t) us + t $ 2 + ...]. 

 

Since hst is real, the imaginary part in brackets should 
be equal to zero, and the real parts of the 
corresponding terms are: 
 

Re as b*
t  = P2 ξs ηt , 

 

Re i (as b*
t $ 1 $ as $ 1 b*

t) = P2 φ ′
η ξ

s (ηt)′ + 

+ P2 φ′
ξ (ξs)′ ηt = P2 grad φ ⋅ (ξs ηt), 

 

Re as b*
t $ 2 = [P Ct ηt $ 4 + P ′

η (ηt)′′′ + 

+ (P′′
η $ P φ′2

η ) (ηt)′′] P ξs/2, 

 

Re as $ 2 b*
t  = [P Ct ηt $ 4 + P′

ξ (ξs)′′′ + 

+ (P′′
ξ  $ P φ′2

ξ ) (ξs)′′] P ηt/2, 

 

Re as $ 1 b*
t $ 1 = (P′

ξ (ξs)′ + P (ξs)′′/2) × 

×(P′
η (ηt)′ + P (ηt)′′/2) + P2 (ξs)′ (ηt)′ φ′

ξ φ′
η, 

 

Re (as b*
t $ 2 $ as $ 1 b*

t $ 1 as $ 2 b*
t  = 

= Fst(P) $ (ϕ′′
st φ′, φ′) P2/2, 

 

where Fst(P) is the expression depending on p and 

independent of φ; φ′ = (φ′
ξ, φ′η) is the vector of 

derivatives of the function φ; ϕ′st = ((ϕst)′ξ, (ϕst)′η), is 

the vector of derivatives of the function ϕst; ϕ′′st is the 
matrix of second derivatives of the function ϕst = ξsηt. 

Thus, we have obtained the following expression 
for the product: 
 

(G G0)(s) (G G0)*(t) = it + s ($ 1)s [P2 us + t + 

+ P2(φ′, ϕ′′
st) us + t $ 1 + 

+ (Fst(P) $ (ϕ′′
st φ′, φ′)  P2/2) us + t $ 2 + ...]. (7) 

 

Substituting Eq. (7) into Eq. (4), we obtain an 
explicit from for the dependence of the momenta hst on 
the pupil function and on spatial coordinate along the 
optical axis: 
 

hst(u) = ($ 1)t + s/s! t! [us + t ⌡⌠
 

 

  ⌡⌠
 

 

P2 ϕst dξ dη $ 

us + t $ 1
⌡⌠

 

 

  ⌡⌠
 

 

P2(φ′ ϕ′st) dξ dη + 

+ us + t $ 2/2⌡⌠
 

 

  ⌡⌠
 

 

P2(ϕ′′
st φ′, φ′) dξ dη $ 

$ us + t $ 2 ⌡⌠
 

 

  ⌡⌠
 

 

Fst(P) dξ dη + ...].  (8) 

 

In order to avoid introduction of any additional 
variables, we assume that P2 in Eq. (8) and everywhere 
below to be defined by the expression 
 

P2/⌡⌠
 

 

  ⌡⌠
 

 

P2 dξ dη, 

which has a meaning of the nonuniformity coefficient of 
the attenuation, over aperture, of the intensity of wave 
that forms the image. 

It is seen from Eq. (8) that although the 
momentum hst is a complex function of the pupil 
function, its higher orders derivatives with respect to u 
at the point u = 0 have a more simple dependence: 
 
ds + t hst(0)

dus + t  = r ⌡⌠
 

 

  ⌡⌠
 

 

P2 ϕst dξ dη, (9) 

 
ds + t $ 1 hst(0)

dus + t $ 1  = r1 ⌡⌠
 

 

  ⌡⌠
 

 

P2(φ′, ϕ′
st) dξ dη, (10) 

 

ds + t $ 2 hst(0)
dus + t $ 2  = r2⌡⌠

 

 

  ⌡⌠
 

 

[Fst(P) $ P2(ϕ′′
st φ′, φ′)/2 dξ dη, 

  (11) 
 
where r = ($ 1)t + s (s + t)!/s! t! ;  r1 = $ r/(s + t); 
r2 = $ r1/(s + t $1). 
 

The relationship (3) allows one to write  explicitly 
the dependence of mst on u: 

 

mst(u) = ∑
k = 0

s + t ≤ 2

   ∑
l = 0

 hs $ k, t $ l(u) nkl + 

+ ∑
k + l > 2

   ∑ hs $ k, t $ l(u) nkl. 

 

The first sum in this expression is a polynomial with 
respect to u to a power lower than s + t $ 2.  By 
definition, n00 = 1.  One can assume the momenta n10 
and n01 to be known, because they determine the 
direction of the optical axis orientation.  Particularly, 
one can take them to be equal to zero, that corresponds 
to the axis orientation toward the energy center of the 
object observed.  Taking into account this equality and 
Eqs. (9)$(11), we have 
 

mst(u) = hst(u) + hs $ 2,t(u) n20 + 

+ hs $ 1, t $ 1(u) n11 + hs, t $ 2(u) n02 + ...; (12) 
 

ds + t mst(0)
dus + t  = 

ds + t hst(0)
dus + t  ,  

 

ds + t $ 1 mst(0)
dus + t $ 1  = 

ds + t $ 1 hst(0)
dus + t $ 1  , 

 

ds + t $ 2 mst(0)
dus + t $ 2  = 

ds + t $ 2 hst(0)
dus + t $ 2  + ..., 

 



54   Atmos. Oceanic Opt.  /January  1996/  Vol. 9,  No. 1 S.M. Chernyavskii 
 

where ellipses mean the terms independent of φ, 
 

⌡⌠
 

 

  ⌡⌠
 

 

P2 ϕst dξ dη = Pst,   s + t ≥ 0, (13) 

 

 

⌡⌠
 

 

  ⌡⌠
 

 

P2(φ′, ϕ′
st) dξ dη = φst,   s + t ≥ 1,  (14) 

 

1
2
 ⌡⌠

 

 

  ⌡⌠
 

 

P2(ϕ′′
st φ′, φ′) dξ dη = φ2st + F2st(P),   s + t ≥ 2,  

  (15) 
 

where Pst = (1/r) ds + t mst(0)/(dus + t) at s + t ≥ 1 
and P00 = 1 by definition; 
 
φst = (1/r1) ds + t $ 1 mst(0)/(dus + t $ 1);  
φ2st = (1/r2) ds + t $ 2 mst(0)/(dus + t $ 2); 
 
F2st(P) is the functional of P. 

Relationships (13)$(15) are the momentum 
equalities sought.  Parameters Pst and φst are the 
momenta of the functions P2(ξ, η) and φ(ξ, η) relative 
to the functions ϕst(ξ, η). 

Equality (15) is nonlinear relative to φ, and this 
fact makes it difficult to use it for determining the 
pupil function.  However, if it is possible to introduce 
the controlled variation of the phase function Δφ(ξ, η) 
in the optical system (for example, in adaptive optics), 
one can determine the variation of the momentum Δφ2st 
from two measurements of the phase function φ and 
φ + Δφ.  Since only the first term in the right-hand 
side of Eq. (15) depends on the phase function, then 
 

Δφ2st = 
1
2
 ⌡⌠

 

 

  ⌡⌠
 

 

P2[(ϕ′′
st φ′ + Δφ′, φ′ + Δφ′) $ 

$ (ϕ′′
st φ′, φ′)] dξ dη , 

 
and the equality 
 

⌡⌠
 

 

  ⌡⌠
 

 

P2(ψst, φ′) dξ dη = φ1st , (16) 

 

follows from it.  Here 
 

ψst = ϕ′′
st Δφ′,  

φ1st = Δφ2st $ 
1
2
 ⌡⌠

 

 

  ⌡⌠
 

 

P2(ϕ′′
st Δφ′, Δφ′) dξ dη . 

 

Parameters φ1st are the momenta of the function φ 
relative to the functions ψst. 

Momentum equalities (13), (14), and (16) are 
obtained supposing that the functions P2(ξ, η) and 
φ(ξ, η) are quite smooth, but they are also valid for 

P2 ∈ L2(Ω) and φ ∈ W1
2 (Ω), because these momentum 

equalities can be continued by continuity to the noted 
spaces. 

 

Let us note that the momentum equality (16) can 
be effectively used in the adaptive optical systems, 
because it allows one to obtain sufficient number of 
equalities, linear relative to φ, in terms of momenta of 
the low order s + t ≥ 2 for different Δφ. 

 

THEOREM OF RECONSTRUCTION OF THE 

WAVE FUNCTION 

 

Equalities (13) are the momenta of the function 
P2(ξ, η) relative to the full system of functions 
{ϕst(ξ, η)}s + t  > 0 in L2(Ω).  They make it possible to 
determine the function P2(ξ, η), if it is unknown.   
By orthogonalization of the sequence {ϕst} in L2(Ω), 

one can pass to the orthonormalized sequence {$ϕst} and 

the corresponding momenta P
$

st, that are the coefficients 
of the Fourier function P2(ξ, η), and so 
 

P2(ξ, η) = ∑
s + t ≥ 0

 ∑ P
$

st ϕ
$

st(ξ, η). (17) 

 

We have supposed in the beginning of the paper 
that the phase function φ(ξ, η) is an element of the 

Sobolev space W1
2(Ω) with the norm10 

 

*φ*W(Ω) = *φ*L(Ω) + *φ*w(Ω); 
 

where 
 

*φ*2L(Ω) =⌡⌠
 

 

  ⌡⌠
 

 

φ2 dξ dη ;  

*φ*2w(Ω) =⌡⌠
 

 

  ⌡⌠
 

 

(φ′, φ′) dξ dη . 

 

Let us take into account peculiarities of the 
problem and introduce the equivalent and a convenient 
norm.  First, let us suppose that the function P2 
satisfies the condition P2(ξ, η) ≥ P2

min
 > 0 in the 

region Ω almost everywhere.  This condition is satisfied 
in applications.  Second, it is sufficient to determine 

the function φ accurate to a constant factor, so W1
2(Ω) 

is considered to mean the subspace of functions 
satisfying the condition 
 

⌡⌠
 

 

  ⌡⌠
 

 

φ dξ dη = 0. (18) 

 

Then we have the inequality 
 

⌡⌠
 

 

  ⌡⌠
 

 

φ2 dξ dη ≤ 

≤ C 
⎣
⎢
⎡

⎦
⎥
⎤

⎝
⎜
⎛

⎠
⎟
⎞

⌡⌠
 
    ⌡⌠
 
 φ dξ dη

2

 + ⌡⌠
 
    ⌡⌠
 
 (φ′, φ′) dξ dη  = 

 

= C⌡⌠
 

 

  ⌡⌠
 

 

 (φ′, φ′) dξ dη ≤ C/P2
min ⌡⌠

 

 

  ⌡⌠
 

 

P2(φ′, φ′) dξ dη , 

 

from the Poincare inequality,10 taking into account the  
condition (18). 

It follows that one can take the value 
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*φ* =
⎝
⎛

⎠
⎞

⌡⌠
 

 

  ⌡⌠
 

 

P2(φ′, φ′) dξ dη
1/2

  (19) 

 

as an equivalent norm in W1
2(Ω). 

For such a definition of the norm, one can consider 
the left sides of the momentum equalities (14) as a  
scalar product of the function φ and functions ϕst(ξ, η), 
and, due to the completeness of the sequence of 
functions {ϕst}, the function φ is unambiguously 

determined in W1
2(Ω) by its momenta φst. 

In our case since the norm (19) and the momentum 
equalities (14) are determined by the scalar product, 
one can write the solution, similarly to Eq. (17), in the 
form: 
 

φ(ξ, η) = φ0 + ∑
s + t > 0

 ∑ φ
$

st ϕ
$

st(ξ, η), 

 

where φ0 is an arbitrary constant; {ϕ$st} is the 
orthogonal sequence of functions {ϕst} with the norm 

(19); {φ
$

st} is the sequence of momenta corresponding to 

the functions ϕ$st. 
Thus the following theorem is proved: 

When  th e  c ond i t i on s  P 2 ( ξ , η )  ≥  P 2
m i n  >  0  

a r e  sa t i s f i e d  a lmos t  ev e r ywhe r e  on  Ω  and  

φ ∈  W 1
2 (Ω) ,  t h e  momentum equa l i t i e s  ( 13)  

and  (14)  unamb iguou s l y  d e t e rm in e  t he  
pup i l  f unc t i on  G( ξ ,  η )=  ϕ ( ξ ,  η ) exp( i φ ( ξ ,  η )  
a ccu r a t e  t o  a  c on s tan t  f a c t o r .  

 

DETERMINATION OF MOMENTA BY THE 

METHOD OF TIME MODULATION 

 

The technique described below gives a clear view 
of the dependence of the pupil function momenta Pst,  
φst, and φ1st on the spatial distribution of the  

intensity.  Let us suppose that the measurement  
plane OXY moves along the z axis according to a 
harmonic law u = u0 sinωt, and the period T = 2π/ω  
is small in comparison with the "frozen" duration of the 
pupil function.  Since the momentum mst(u)  
is a polynomial of (s + t) power relative to u,  
then the temporal function mst(u0 sinωt) is a 
trigonometric polynomial of (s + t) power, and its 
higher-orders Fourier coefficients determine  
the momenta Pst, φst, and φ1st of the pupil  
function. 
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