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The tomographic method for measuring the phase distribution in an optical 
beam cross section is proposed and tested in the numerical experiment. The phase is 
reconstructed from the measurement data on intensity integral moments of an image 
formed by a receiving aperture at different positions of slit and strip diaphragms. 

 
The problem of checking quality of optical 

elements, mirror and lens surfaces, etc. arises in 
constructing instruments of astronomical optics and 
manufacturing other optical instruments. The devices 
for measuring optical wave phases (the so-called wave 
front sensors) are an important part of adaptive system. 
The corresponding meters are well developed.1–3 The 
interferometric and diffraction methods of analysis are 
most widely spread. 

Interferometry is able to provide the required 
accuracy of a control. But its practical use faces serious 
problems in the case of incoherent radiation and weak 
fluxes. Besides, the wave front error varying in time 
leads to interferogram blurring and makes its processing 
difficult. 

The widely spread Hartmann method removes 
these problems to considerable extent, but in its turn it 
has a low spatial resolution on the optical surface. 
Besides, Hartmann diaphragm uses only a part of the 
light flux incident on the receiving lens what decreases 
the efficiency of the method for weak light fluxes. If 
the spatial distribution of the light beam intensity over 
the subaperture is not homogeneous, Hartmann method 
makes uncontrollable mistakes. In this paper we 
propose a method which is, in our opinion, free from 
the above-mentioned shortcomings. 

 
 

FIG. 1. Measurement scheme in the diffraction 
tomographic sensor. 

Let us consider the measurement scheme presented 
in Fig. 1. We are interested in the phase distribution of 
the optical beam S(ρ0) with the intensity distribution 
I(ρ0). The wave front to be measured falls onto a 
receiving lens of the radius R with a slit aperture 
diaphragm. The coordinate system {x0, y0} is connected 
with the center of the receiving lens. The position of 
the slit axis is given by the normal equation of the 
straight line p – x0cosϕ – y0sinϕ = 0. The aperture 
function of the lens adjusted in such a way is denoted 
by K(ρ0). 

We characterize the intensity distribution IF(ρ) in 
the focal plane of the lens by the following integral 
moments: 

 

M 0
FR = 

⌡⌠
 

 ⌡⌠
 

 

IF(ρ)dρ , (1) 

and 

MFR = 
⌡⌠

 

 ⌡⌠
 

 

IF(ρ)ρ dρ . (2) 

 

It is easy to show4 that the intensity distribution in the 
focal plane of the lens and the second moment of the 
field of the wave incident onto the lens U(ρ0)U*(ρ′0) 

are connected by the formula 
 

IF(ρ)= 
k

4π2F2 ⌡⌠
 

 ⌡⌠
 

 

d2ρ0⌡⌠
 

 ⌡⌠
 

 

d2ρ′0U(ρ0)U*(ρ′0)K(ρ0) × 

 

× K*(ρ′0)ex! 
⎩
⎨⎧

⎭
⎬⎫

ikρ(ρ0 # ρ′0)
F , (3) 

 

where F is the focal length of the lens, k =2π/λ, λ is 
the wavelength. Now let us obtain the value of the 
moments (1) and (2) in the focal plane of the lens. 
Substituting Eq. (3) into Eqs. (1) and (2) and using 
well-known relations 
 

⌡⌠
 

 ⌡⌠
 

 
$∞  

∞
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ik ρ(ρ0 # ρ′0)
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= 
4π2F2

k2 δ(x0 – x ′0) δ(y0 – y ′0); 
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ikρ(ρ0 # ρ′0)
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= 
4π2F3

ik3  δ(y0–y ′0)δ'(x0–x ′0)I+δ(x0–x ′0)δ'(y0–y ′0)m , 
 

where I and m are unit basic vectors in the plane of the 
lens, we obtain 
 

M 0
FR = 

⌡⌠
 

 ⌡⌠
 

 

K(ρ0)I(ρ0)d2ρ0; (4) 

MFR = 
F
ik 

⌡⌠
 

 ⌡⌠
 

 

K(ρ0)U(ρ0)∇⊥U*(ρ0)d2ρ0 . (5) 

 

Taking into account that the value MFR is real, one can 
write 
 

MFR = 
F

2ik 
⌡⌠

 

 ⌡⌠
 

 
$∞  

∞

K(ρ0){U*(ρ0)∇⊥U(ρ0) – 

– U(ρ0)∇⊥U*(ρ0)}d2ρ0 . 
 

Since the value 
 

1
2i (U*∇⊥U – U∇⊥U*) = I(ρ0) ∇⊥S(ρ0) 

 

is the transverse component of the Umov–Poynting 
vector, we finally obtain 

 

MFR = – 
F
k 

⌡⌠
 

 ⌡⌠
 

 
$∞  

∞

K(ρ0)I(ρ0)∇⊥S(ρ0)d2ρ0. (6) 

 

Approximating the slit diaphragm (whose length is 
limited by the lens size) by the function 
 

K(x0,y0) = rect ( x2
0 + y2

0 – R) × 
× δ(p – x0cosϕ – y0sinϕ), 

 

where rect(ξ) = 1 for ξ < 0 and rect(ξ) = 0 for ξ > 0, 
from Eqs. (4) and (5) we have 
 

M 0
FR(p, ϕ) =

⌡⌠
 

 ⌡⌠
 

 

dx dy rect( x2 + y2 – R) × 

× I(x, y)δ(p – xcosϕ – ysinϕ), (7) 
 

MFR(p, ϕ)=
⌡⌠

 

 ⌡⌠
 

 

dx dy rect( x2 + y2 – R)I(x, y) × 

× ∇S(x, y) δ(p – xcosϕ – ysinϕ). (8) 
 

The integrals (7) and (8) are Radon transformation5 of 
the two-dimensional intensity distribution and the 
transverse component of the Umov–Poynting vector. 

Therefore, conducting the measurement of the 

values M 0
FR(p, ϕ) and MFR(p, ϕ) in the focal plane 

and using then the algorithms of the Radon inversion 
one can reconstruct the distribution of the intensity 

I(x, y) for x2 + y2 ≤ R and that of the value 

I(x, y)∇S(x, y), x2 + y2 ≤ R. Note that, 
"synthesizing" the slit by consecutive subtraction of the  

values M 0
FR and MFR for different values of the 

parameter p of the normal straight line p – xcosϕ – 
– ysinϕ = 0, one can use a half-plane or a strip as a 
diaphragm in order to use as large area of the lens as 
possible. Dividing the components of the Umov–
Poynting vector by the intensity we obtain the values 
of the derivative (local tilts) of the wave front in the 
receiving aperture plane. In order to reconstruct the 
phase from measurements of its tilts we use the results 
from Ref. 7. 

Now let us describe the results of numerical 
experiment on the phase reconstruction. A single-mode 
Gaussian beam with the field distribution in the lens 
plane of the following form 

 

U(ρ) = U0exp
⎩
⎨
⎧

⎭
⎬
⎫

$ 
ρ2

2a2
e
 $ i 

kρ2

2Fe
 (9) 

 

with the effective radius ae = 0.05 m and the focal 

length Fe = –600 m, U0 = const, was chosen as the 

initial model for reconstruction. The receiving aperture 
was limited by the radius R = 0.05 m. 

The form of a tomographic projection of the 

intensity M0
FR(p, ϕ) and two components of the 

Umov–Poynting vector Mx
FR(p, ϕ) and My

FR(p, ϕ) are 

presented in Fig. 2. The algorithm using the analytical 
formula of the inverse Radon transformation6 

 

I(x, y) = – (2π)–2
⌡⌠
0

π
 

 ⌡⌠
$∞

∞
 

 

M 0
FR(p, ϕ)

(p $ xcosϕ $ ysinϕ)2 dpdϕ. (10) 

 

was used to reconstruct I(ρ), I(ρ)
∂S(ρ)

∂x , and I(ρ)
∂S(ρ)

∂y . 

The integrals over the variables p and ϕ were calculated 
by the rectangular method. The reconstruction of 
tomograms was made by projections obtained from 20 
directions which were evenly distributed in the angle 
range 0°–180°. The reconstruction was made in a unit 
circle. The dimension of the image matrix was 21×21, 
and the grid step was h = 0.05. Figure 3 presents one of 
the phase derivatives obtained by dividing the 
component of the Poynting vector by intensity. In 
accordance with the chosen model (9) the intensity and 
the components of the Poynting vector vanish at the 
periphery of the beam. This tendency turns to be 
uneven for the nominator and denominator due to 
computational errors. It is the factor that causes the 
artifacts in the picture of the components of the phase 
gradient (Fig. 3a). In order to remove these artifacts 
filtration of the calculated values of the derivative was 
made. The component of the filtered phase gradient is 
shown in Fig. 3b. The reconstruction of the phase 
distribution by measuring its partial derivatives was 
made on the basis of algorithms described in Ref. 7. 
The picture of the initial model and the reconstructed 
phase distribution is shown in Fig. 4. The comparison 
of the initial and the reconstructed phase distributions
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FIG. 2. The tomographic projections of intensity and the components of the Umov–Poynting vector. 

 
FIG. 3. The reconstructed component of the phase gradient: without (a) and with filtration (b). 

 
FIG. 4. Initial (a) and reconstructed (b) phase distribution of the Gauss optical beam. 
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makes it possible to conclude that the proposed method 
can be interesting for practical use. However, in order 
to realize the theoretical reasons one should solve 
preliminary the main theoretical calculational and 
engineering problems, namely, 

1. to estimate the reconstruction error 
quantitatively and to make the algorithms of the Radon 
inversion and Hamilton's operator inversion to the 
values corresponding to the purposes of the control and 
to the parameters of measured objects with respect to 
accuracy and spatial resolution; 

2. to provide the measurement of integral moments 
in the focal plane of a lens with the accuracy necessary 
to reach the given accuracy in phase measurement; 

3. to give the coordinates of the position of the 
diaphragm and its axis in such a way that the error is 
minimum. 
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