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We consider in this paper a design of the X–Y–Z actuator of a segment of 
the a controllable mirror that provides the dynamic separation between movements 
of a case and mobile elements of the actuator. Such a design excludes the 
interference among segment actuators installed on a common base. 

 
The composed (segmented) mirror, each segment 

of which can move in three directions being driven by 
individual actuators,1 is one of the promising versions 
of a controllable mirror design for adaptive–optics 
systems. 

The possibility of using the same construction of 
actuators for all segments, that simplifies the design 
and fabrication of a controllable mirror and electronic 
devices for generation of controlling actions, is among 
the advantages of the segmented mirror. 

All actuators of segments are installed on a 
common base. In this case, the identity of actuators 
may cause unwanted effect due to interaction between 
actuators that could transfer dynamic actions to other 
segments via a base which is not absolutely rigid. This 
interaction will be especially significant in the case 
when each actuator, being a mechanic system, possesses 
a large Q–factor, i.e. small internal losses. As a result, 
we have a mechanic system with a number of 
vibrational elements offering the same resonance 
frequency. 

Traditional methods for providing a high–quality 
operation of such a system have a lot of drawbacks: 

(i) reduction in the Q–factor of a separate 
actuator may result in reduction of the accuracy of 
operation due to increasing internal losses; 

(ii) increase in the actuator vibration damping 
with the help of control complicates the construction of 
an actuator and electronics; 

(iii) increase in the base rigidity results in its mass 
increase; 

(iiii) shift in resonance frequencies of separate 
actuators is in conflict with their unification and 
complicates the construction. 

For radical solution of the problem of diminishing 
the actuators' interaction, we propose to use such a 
construction in which there are practically no dynamic 
interactions between each actuator and a common base. 

Let us consider an X–Y–Z actuator of a 
hexagonal segment of a segmented mirror. The 
construction comprises three actuators of linear 
displacements, which fall within the projection of a 
segment. A peculiar feature of the construction is in the 
fact that the actuator of a controlled displacement is 

indirectly joined with a segment by a lever whose axis 
is fastened to a case. 

Shown in Fig. 1 is the design model of an X–Y–Z 
actuator comprising the case 1, a hexagonal mirror 
segment 2, three identical linear actuators 3 joined with 
the segment 2 at three points by levers 4. The actuator 
case is installed on a common base 5. 

 

 
 

FIG. 1. 
 

The mechanical model of the actuator is described 
by the following parameters: 

(i) the case – Mc, Jcx, Jcy, Jcz, Ccx, Ccy, Ccz, Ccα, 

Ccβ, Ccγ (mass, moments of inertia, and rigidity of 

fastening to the mirror base); 
(ii) the mirror – M0, J0x, J0y, J0z, C0x, C0y, z0 

(mass, moments of inertia, rigidity of fastening to the 
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case along the x and y coordinates, and coordinate of 
the mirror center of mass); 

(iii) actuators – Ma, Jax, Jay, Jaz, Ca, xai, yai, zai 
(mass, moments of inertia, rigidity in working 
displacements, coordinates of the center of mass of a 
separate actuator); 

(iiii) transfer levers – R0, r2/r1 (distance from 
the mirror axis to the point of lever fastening to the 
mirror, ratio of lever arms fastened to the mirror and to 
the actuator). 

As the generalized coordinates of the model, we 
took 

– xc, yc, zc, αc, βc, γc – case displacements about 
the common base, 

– z1, z2, z3 – working displacements of actuators 
about the case, 

– x0, y0 – mirror displacements about the case in 
nonworking directions. 

Having expressed the displacements of all bodies 
composing the model of the actuator in terms of the 
generalized coordinates, we can write down the kinetic 
energy of the system. Following the Lagrange method, 
we find the equation of motion in the generalized 
coordinates: 

 

d
dt ⎝
⎛

⎠
⎞dT

d ⋅ϕi

 = Qi. (1) 

 

The generalized forces result from the rigidity in the 
corresponding displacements, excluding actuators where 
the controlling forces exerted by actuator are also added. 

We have derived and analyzed a complete 
expression for the system (1). It has been revealed that 
in the model chosen it is possible to separate out the 
motion along the coordinate γc. The motions in the 
coordinates xc, yc, x0, y0 are related only slightly to 
other motions, and in the first approximation they can 
be neglected. 

Most interesting are the interactions of the model 
along coordinates z1, z2, z3, zc, αc, βc, which govern the 
dynamic interactions between actuators installed on a 
common base. Having separated this part from Eq. (1), 
we obtain 

 

D(p)X = F, (2) 
 

where D(p) is 6×6 polynomial matrix, 
XT = (αc, βc, zc, z1, z2, z3); FT = (0, 0, 0, U1, U2, U3) 
(Ui are the controlling forces). 

In derivation of Eqs. (1) and (2) we have made 
the following assumptions: 

– the mirror is a homogeneous hexahedral prism of 
height h and side a (see Fig. 1); 

– the arrangement of actuators' axes is as in 
Fig. 1: 

 

xa1 = a/2, ya1 = 0, za1 = za2 = za3 = za, 
 

.a2 = –=/4, ya2 = s/4, 
 

.a3 = – =/4, ya3 = –s/4, (s = a 3). 
 

For a homogeneous hexahedral prism 
 

J0x = J0y = M0 ⎝
⎛

⎠
⎞5

2 a2 + h2  / 12= J0, (3) 

 

where M0 is the prism mass. 
Taking into account these relationships, we 

derived the expressions for elements of the matrix D, 
Eq. (2): 

 

D11 = [Jcx + 3Ja. + J0 + Ma (3z2
a + 3a2/8) + 

 

+ M0 z2
a] p2 + Ccα; 

 

D22 = [Jcy + 3Jay + J0 + Ma(3z2
a + 3a2/8) + 

 

+ M0 z2
a]p2 + Ccβ; 

 

D33 = (Mc + 3Ma + M0)p2 + Ccz; 
 

D44 = D55 = D66 = [Ma + M0 r
2
2 /(9r21) + 

+ J0 4r
2
2/(9r21 R

2
0)] p2 + Ca; (4) 

 

D12 = D13 = D14 = 0; 
 

D15 = – D16 = [Ma= 3 – J0 2r2/( 3 r1R0)]p2; 
 

D23 = 0, 
 

D24 = – 2/ 3 D15, D25 = D26 = – D24/2; 
 

D34 = D35 = D36 = [(Ma – M0 r2/(3r1)] p2; 
 

D45 = D46 = D56 = [M0 r
2
2/(9r21 R

2
0)] p2. 

 

It should be noted that Dij = Dji for the matrix 
D(p). 

Diagonal elements of the matrix D(p) characterize 
the dynamics of each isolated motion. Let us note that 
in the model under consideration all isolated motions 
are taken as undamped that is acceptable with a low 
level of internal losses. 

Elements D34, D35, and D36 characterize the effect 
of the working displacements of actuators zi on the 
vibrations of the case zc that can be transferred to the 
other actuators through the common base. 

To exclude this effect, the following relation 
 

r2/r1 = 3Ma/M0. (5) 
 

should be chosen. 
Elements D15, D16, D24, D25, and D26 reflect the 

effect of actuator motions on rotations of the case. If 
the condition 

 

Ma(a/2) – J0[2r2/(3r1 R0)] = 0 (6) 
 

is satisfied, these motions can be separated. 
Elements D45, D46, D56 characterize the dynamic 

interconnection between the separate channels of the 
X–Y–Z actuator. To exclude this interconnection, it is 
necessary to provide the fulfilment of the following 
condition: 

 

M0 – 2J0/R2
0 = 0. (7) 

 
The condition (5) should be considered as most 

important since the interaction between actuators  
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through the common base is mainly due to vibrations 
normal to the plane of the base. 

If the condition (5) is satisfied, the condition (6) 
takes the form 

 
Ma(a/2) – J0[2Ma/(M0R0)] = 0,  
 

M0aR0 = 4J0. (8) 
 
Taking into account Eq. (3), the condition (7) can be 
converted into the form 
 

R2
0 = (5a2 + 2h2)/12, (9) 

 
while the condition (8) can be written as 
 
R0 = (5a2 + 2h2)/6a. (10) 
 

If the ratio h/a = 0.1 is taken, then we derive 
R0 = 0.6468a for Eq. (9) and R0 = 0.8367a for 
Eq. (10). 

For h/a = 0.2 
R0 = 0.6506a for Eq. (9) and R0 = 0.8467a for 
Eq. (10). 

The conditions (7) and (8) cannot be satisfied at 
the same time, therefore we propose two approaches: 

– to provide the dynamic separations of the 
actuator motions and the case rotations following 
Eqs. (8) and (10), whereas the separation of motions of 
actuators will be provided by generation of controlling 
forces in the form written by Eq. (2); 

– to provide the dynamic separations of actuator 
channels following Eqs. (7) and (9), ignoring the case 
motions along coordinates ac and βc and assuming that 
this effect on other actuators installed on the common 
base will be transformed to the case vibrations in a 
coordinate, the dynamic separation in which is already 
provided by the fulfilment of the condition (5). 

Additional effect from the introduction of a lever 
into the construction of segment actuator is in the 
following. In the case when 

 
r2/r1 < 1  
 
the inertial load of mirror applied to the actuator rod is 
reduced by the factor of (r2/r1)2, that increases the 
rate of the system operation. When designing a 
concrete construction of the X–Y–Z actuator, having 
refined the parameters xai, yai and relation (3), one 
will have a need to recalculate the coefficients of the 
matrix D(p) that may yield some corrections to the 
relations (9) and (10). 

The change in the actuator construction proposed 
here allows the operation of a large number of identical 
actuators installed on the common base to be essentially 
improved by sufficiently simple means. 
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