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Some properties of the ground atmospheric layer are considered from the 
point of view of the influence of its turbulent inhomogeneities on the characteristics 
of optical radiation propagating in this layer. 

 

Turbulence in the ground atmospheric layer is the 
most variable and rather complex dynamic structure. 

It is known that from the viewpoint of description 
of optical wave intensity fluctuations the spectral 
density of fluctuations of the index of air refraction is 
an isotropic function. However, in recent years, 
especially in connection with the development of 
adaptive optics, investigations of fluctuations of optical 
wave phase evoke great interest. Correct description of 
phase fluctuations of optical waves already demands 
consideration of deviation of the atmospheric 
turbulence spectrum from the power Kolmogorov-
Obukhov law in the low spatial frequency range.1–7 At 
the same time, just this portion of turbulence spectrum 
range is the most poorly investigated. Undoubtedly, 
one of the important properties of the spectrum in low-
frequency range is its anisotropy. 

In this paper we consider some properties of this 
medium from the point of view of its influence on the 
characteristics of optical radiation propagating in the 
ground atmospheric layer. 

If we are within the limits of a model description 
of the spectral density of fluctuations of the air 
refractive index when we calculate the phase 
fluctuations of optical waves, the most acceptable12 is 
the following model: 

 

φn(κ2, κ3,x) = 0.033C2
n(x) (κ2

2 + κ3
3)

– 11/6 × 

 

× {1 – exp[– κ2
2/κ2

02 – κ2
3/κ2

03]}, (1) 
 

where x is the coordinate, along which the optical 
wave propagates; κ2 and κ3 are orthogonal 
components of spatial wave numbers. Model (1) is 
isotropic in the inertial interval of wave numbers (for 
κ2 >  > κ02, κ3 >  > κ03), and it may describe the 
anisotropy of spectrum at inequality of components of 
the outer scale (κ02 = κ03) out of the inertial interval. 

Among the characteristics of optical waves, 
propagating in turbulent atmosphere, the most 
sensitive to turbulent spectrum anisotropy are 
variances of orthogonal components of random 
displacements of the center of gravity of an optical 
source image formed (σ2

y, σ2
z). 

When making calculations, we shall use the 
expression for phase fluctuations of plane optical wave 
propagating in turbulent atmosphere, calculated in 
approximation of smooth perturbation method, as the 
initial approach: 

 

S(ρ, L) = k
⌡⌠
0

L

 
 

 

dξ 

⌡⌠ 

 

⌡⌠ 

 

d2n(κ, x) ×  

 

× cos[κ2(L – x)/2k] exp(iκρ), (2) 
 

where k is the radiation wave number; (ρ, L) is the 

observation point; n1(ρ, x) = 
⌡⌠ 

 

⌡⌠ 

 

d2n(κ, x)exp(i κ ρ) 

are fluctuations of the refractive index. 
By definition the angle of slope of the wave front 

(under condition of small intensity fluctuations) is: 
 

α = – (k Σ)
– 1 

⌡⌠ 

 

⌡⌠ 

 

Σ

d2ρ ∇ρ S(ρ, L). (3) 

 

Here Σ is the receiving aperture of a measurer of 
wave front slope. Using Eq. (2), we write down 
expressions for gradient of phase fluctuations 
∇ρ S(ρ, L) and its components ∂S(ρ, L)/∂y, ... , 

∂S(ρ, L)/∂z. 
Then we calculate the overall variance of the 

fluctuations of angular position fluctuations σα
2, as well 

as its orthogonal components σ2
y, σ2

z. First of all we 
will write down the expression for general variance: 
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Σ
 

d2ρ1 d
2ρ2 exp (iκρ). (4) 

 

Calculations by Eq. (4) use Gaussian aperture of a size 
a and spectrum given by Eq. (1). We obtain 
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By introducing polar coordinates 
 

d2κ = dκ κ dϕ, ..., κ2 = κ cos ϕ, ..., κ3 = κ sin ϕ. 
 
After computation the value of an integral we have 
 

σ2
α = π 0.033 Γ(1/6) a

–1/3 
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L
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–2 b2)
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where b2 = cos2ϕ/κ2
02 + sin2ϕ/κ2

03. For isotropic 

spectrum (κ02 = κ03) a
–2b2 = (a2 κ2

02)
–1 and Eq. (5) 

takes the form 
 

σ2
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 × 
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dx C2
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02 a
–2)

–1/6}, (6) 

 

which, under the condition κ02a <  < 1, reduces to the 
known expression: 
 

σ2
α = 3.62 a

–1/3
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0

L

 

 

dx C2
n(x) {1 – (κ02 a)1/3}. 

 

Further we introduce the parameter δ, 
characterizing the spectrum (1) anisotropy in the low-
frequency range, in such a way that 

 

κ$2
02 = κ$2

03 (1 + δ). (7) 
 

If δ = 0 we obtain isotropy, otherwise we have the 
anisotropic spectrum. Then taking into account Eq. (7) 
we have 

 

b2/a2 = cos2ϕ/a2 κ2
02 + sin2ϕ/a2 κ2

03 = 
 

= (1 + δ) cos2ϕ/κ2
03 a

2 + sin2ϕ/κ2
03 a

2 =  
 

= κ$2
03 a

–2(1 + δ cos2ϕ). 
 

In further calculations we shall make use of the 

fact that the corresponding variances of components σ2
y

and σ2
z can be expressed in the integral form by analogy 

with Eq. (4). Anisotropic spectrum 1 is described by 
three parameters C2

n, κ03, δ, therefore three equations, 
relating these parameters to data of variance 
measurements (σ2

α, σ2
y, σ2

z), are necessary. 

It can be shown that results of calculations of the 
corresponding variances are expressed by means of a 
universal integral 
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0

2π
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03 a

–2
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Let us calculate numerically just those 
characteristics, which are measured in optical 
experiments, namely, σ2

y and σ2
z. Then use them as the 

initial data and calculate the following quantities: 
 

K = (σ2
y – σ2

z)/(σ2
y + σ2

z),  K1 = σ2
y/σ2

z. (9) 
 
It is not difficult to show that for homogeneous optical 
paths the measured values K and K1 are independent of 

⌡⌠
0

L

 

 

dxC2
n(x), as a result, no absolute measurements are 

needed. 
We return to numerical calculations on the basis 

of a model. Using the universal integral (8), we derive: 
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K1 = 
⌡⌠
0

2π

 

 

dϕ cos2ϕ {1 – (1 + κ$2
03 a

–2 × 

× (1+δ cos2ϕ))–1/6}/
⌡⌠
0

2π

 

 

dϕ sin2ϕ {1– (1+κ$2
03 a

–2 
× 
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It is easy to check using Eqs. (10) and (11) that 
under isotropic conditions (δ = 0) K = 0, K1 = 1. 

Let us now make the change of variables in the 
integrals in formulas (10) and (11): 
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Let us write I for a first integral in Eq. (12) and 
II for the second, then we derive: 

 
K = (II – I)/[(II + I) – π/2],  
K1 = [2I – π/2]/[2II – π/2]. (13) 
 

Unfortunately, the integrals in Eq. (12) cannot be 
reduced to a simple analytical form, therefore their 
numerical calculation is required. As a result of 
numerical calculations of integrals in Eq. (12), we 
derive the tables of values of K and K1 as functions of 
two parameters δ and κ03a. The former parameter 
characterizes the magnitude of the spectrum (1) 
anisotropy, and the latter determines the relation 
between the outer scale of turbulence and the size of 
the receiving aperture a. 

The calculations for values δ = κ2
03/κ2

02 – 1 in the 
interval from 0 to 100 and for parameter b = κ03a 
correspondingly in the interval from 0.01 to 1.00 make 
it possible to cover all possible atmospheric variations 
of the components of the outer scale of turbulence. 

Optical measurements were accompanied by the 
corresponding meteorological measurements, which 
were carried out at the heights of 1.25, 2.5, and 5.0 m. 
Thus obtained results were used for calculating the 
following characteristics at the height of the optical 
radiation propagation (h = 2.5 m): 

– Obukhov parameter of stability 
 

B = gh (T2h – Th/2)/T(h)v$2(h), (14) 
 

– outer scale of turbulence (from meteorological 
data) 
 

Lmet
0  = [C2

T/(2.8 (ΔT/Δh)2) (p/1000)0.572]3/4, (15) 
 
where g is the acceleration of gravity; p is the pressure 

at the height of 2.5 m, C2
T has the dimensionality of 

deg2/cm2/3. In the latter formula a multiplier 
(p/1000)0.572 reduces the value of pressure to the level 
at 1000 mb. 

Besides, the reduction of optical measurements was 
carried out for elimination of the influence of 
atmospheric refraction. It is known that in a stratified 
medium, such as the atmospheric ground layer, there 
are stable temperature gradients. However the presence 
of temperature gradients brings up to the deflection of 
optical beams. If substantial changes of mean 
temperature gradient within the beam size occur, this 
leads to the nonuniform broadening of optical beam, 
especially, in the ground layer this must lead to 
characteristic beam elongation in vertical direction. 

The angle of refraction r is calculated by formula: 
 

r = 1.25 L(n – 1) dT/dh/T, 
 
correspondingly, relative increase of vertical 
displacements is related to the increment of refraction 
angle within the beam, i.e. 

dr = 1.25 L(n – 1) d2T/dh2(a/T) , 
 

the relative increase of vertical displacement is 
connected, in its turn, with the change in refraction 
angle at the change in optical beam size, i.e., with 
d2T/dh2. 

Estimation of the second derivative for 
temperature is carried out taking into account 
atmospheric instability by the following formulas: 

 

d2T/ dh2 = $ 
4
3 h dT/dh ...(B ≤ 0), 

d2T/dh2 = $ 
1
h dT/dh ...(B → 0). 

 
Thus, the amplitude of additional contribution 

from the refraction to jitter of the image, formed in the 
stratified medium, because of a change in the mean 
temperature at unstable stratification can be estimated 
using the following formula: 

 

σr = 2L(n – 1) (ΔT/Δh) (a/Th). (16) 
 

As one can see, the influence of refraction should 
be expected for very wide beams, when the scale of 
temperature gradient variations is compared with the 
beam size. 

For elimination of the influence of refraction on 
the experimental data, it is necessary to calculate σr by 
formula (16) using meteorological measurements and to 
decrease rms deviations for random vertical shifts. 

Experiments have been carried out in the form of 
cycles of observations for many hours in the 
atmosphere under conditions of a uniform underlying 
surface, in both day and night time. The results of 
processing of experimental (optical and 
meteorological) measurements form data files for the 

following quantities: K, K1, C2
T (or C2

n for the 

wavelength λ = 0.6328 μm), B, L0
met. Data files in 

comparison with the tables of numerical calculations 
of this quantities on the basis of formulas (12) and 
(13) allow us to obtain values of the anisotropy and 

the outer scale of turbulence L0
met (size of receiving 

aperture and of optical beam were measured 
experimentally). 

The values L0
met and a allow us to determine 

approximate value of the parameter b = a/L0
met. The 

more precise determination of quantities δ and b 
simultaneously is made by retrieving of numerical 
calculations based on current values of K and K1 from 
data files. 

Analysis of the results has shown that the greatest 
values of anisotropy δ are reached at unstable 
stratification of the atmosphere (the great positive 
values of B), with the increase of stability the values δ 
decrease. For the height of 2.5 above the underlying 
surface, the high anisotropy has been revealed (from 

5.5 to 8.6 for δ $ 1). This means that the greatest (at 
this height) inhomogeneities of turbulent atmosphere 
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are in horizontal direction with the sizes five to eight 
times as large as the vertical. The meteorological data 

allow one to calculate values of the outer scale L0
met by 

formula (15). As one can see from our data, most 
probable values of this parameter lie in the interval 
between 0.3 and 3 m. 

Thus, these results convincingly confirm that in 
the ground atmospheric layer the largest turbulent 
inhomogeneities, influencing the phases of optical 
waves, which propagate in the atmosphere, have a 
pronounced anisotropy of properties. The level of this 
anisotropy depends on the parameter of instability of 
the atmosphere (at this height), and the height above 
the underlying surface. Second part of this statement 
requires the additional investigations, although, as our 
laboratory measurements8-11 show, anisotropy of 
properties in the low-frequency region of turbulent 
spectrum depends substantially on the height above the 
underlying surface. 
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