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The efficiency factors of light absorption and scattering by a halo of 

secondary particles produced by evaporation of an initial carbon particle in a field 

of high-power laser radiation have been calculated.  The laser radiation is shown to 

be significantly attenuated because of scattering by heat halo and absorption by 

secondary condensed aerosol produced by evaporation of the initial particle. 
 

We will consider evaporation of a carbon particle 
suspended in air in a field of high-power laser radiation 
in a subsonic regime.  As is shown in Ref. 1, a cloud of 
submicron aerosol is formed in the vicinity of particle.  
An induced heat-mass-halo may result in excess 
attenuation of electromagnetic radiation.  In the present 
paper, cross section of light attenuation by an 
evaporating carbon particle of coarsely dispersed 
fraction is studied. 

Let us introduce the effective refractive index of a 
medium perturbed in the vicinity of the evaporating 
particle 

 

neff = ng + nd + ind′  , (1) 

where   

ng = 1 + 2 π ∑
k=1

2

 Pk(r) 
βk

kB T(r)
 

is the refractive index of a vapor-gas mixture,  
 

nd + ind′  = 2παd N(r)  
 

is the additional term describing optical properties of 
condensed aerosol.  Here Pk and βk are the partial 

pressure and polarizability coefficient of the kth 
component of a vapor-gas mixture, respectively (k = 1 
is for the carbon vapor and k = 2 is for the air);  kB is 

Boltzmann’s constant;  T(r) is the temperature of a 
medium at the distance r from the center of the 
evaporating particle; αd= a3(m2 $ 1)/(m2 + 1) is the 
polarizability of a condensed spherical particle with 
radius a and complex refractive index m;  N(r) is the 
number density of condensed aerosol. 

In the Van de Hulst approximation valid for the 
diffraction parameter of heat-mass-halo ρd >   >  1 and 
⏐neff $ 1⏐ <   <  1, the expression for the efficiency factor 
of light absorption by the condensed aerosol under 
condition of small run-on of the wave phase has the 
form2  

K h
ab = 2B2  

⌡
⌠

0

π/2
 

 
4ρd nd′(τ) cosτ sinτ d(cosτ) , (2) 

 

where τ = arccos(x/B), B = Rh
cl/R is the 

dimensionless radius of a halo formed by condensed 
aerosol,  x is the dimensionless radial distance;  

ρd = 2πRh
cl/λ,  λ is the light wavelength, and R is the 

radius of evaporating particle.  The estimation of the 
run-on of the phase gives the value of Δϕ ~ 0.15 for 
m = 1.96 $ i 1.01,  a ~ 5⋅10$9 m,  N = 1020 m$3,  
β2 = 1.7⋅10$30 m3,  P2 ~ 105 N/m3, characteristic radius 

of a heat halo Rh
heat ~ 50 R, and radius of the cloud of 

secondary particles Rh
cl ~ 20R;  hence, approximation 

(2) is valid. 
Let us consider the estimation for a dimensionless 

absorption cross section that can be used to obtain the 

preliminary information on K h
ab without cumbersome 

calculations.  As is shown in Ref. 1, the vapor 
condensation occurs at the distance r ~ (2$4) R.  
Hence, the absorption within the zone of phase 
transition can be neglected in comparison with that by 
the whole condensed aerosol cloud.  Then for 

calculation of K h
ab it is suffice to find the number 

density of aerosols outside of the condensation zone, 
where the aerosol number density is described by the 
equation 

 

∂N(t, r)
∂t  + 

1
r2

 
∂
∂r (r

2 V(t, r) N(t, r)) = 0 (3) 

 

with the boundary conditions  
 

N(t = 0, r) = 0,  N(t, r = R1) = Ns(t),  
 

where V(t, r) is the velocity of the Stefan flow,  R1 is 
the external radius of the zone of phase transition, and 
Ns(t) is the number density of secondary (condensed)  
particles at r = R1.  Making the substitution of variable 
N0 = N/ρ(r), where ρ(r) is the concentration of 
heterogeneous mixture (total number of carbon vapor 
atoms, condensed matter atoms, and air molecules per 
unit volume), and using the Laplace transform with 
allowance for weak dependence of ρ(t, r) and V(t, r) 
on time in comparison with r, the solution of equation 
(3) will be written in the form 
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N(t, r) = 

⎩⎪
⎨
⎪⎧

Ns(t) T(R1
 

)

T(R)
 , at t ≤ 

⌡
⌠

R

r
 

 

dr

V(r)
 ,

0 , at t > 
⌡
⌠

R

r
 

 

dr

V(r)
 .

 (4) 

 

Outside of the condensation zone (r ≥ (2$4)R) the 
temperature of a medium is less than 3000 K.  This 
permits us to use the analytical dependence of the 
coefficient of thermal conductivity i(T) on 
temperature3 in the equation for temperature field in 
the vicinity of evaporating particle in the absence of 
condensation4  

 

T(x) = T0(1 + c0(p + 1)/x)1/(p+1) , (5) 

where c0 = 
⌡
⌠

T0

Ts
 

 

i(ξ)dξ
i(T0)T0

 ,  p = 0.75 (see Ref. 3), and T0 

is the temperature of unperturbed medium.  By 
substituting in Eq. (2) the derived expression for the 
number density N(t, r), accounting for Eq. (5), we 
find 

K h
ab = 

8a1 π
λ  R(t) nd′(T0) ⎝

⎛
⎠
⎞B0 

c0(p + 1)

1

p+1
 B3 , (6) 

where 

a1 = 
1

1 + b
 $ ∑

k=1

$

 
n(n $ 1) … (n $ k)(n $ k + 1)

(k + 1 + b)k!
 , 

n = 
1
2
 ,   b = 

1
2(p + 1)

 ,   

nd′(T0) = 2π Im(αd) Ns(t) 
T(R1

 

)

T0
 . 

 

Dimensionless radius of the halo of secondary particles 
can be found using the mass conservation law 
 

4
3
 πρcar (R0

3 $ R3(t)) = 

= 
⌡
⌠

R

Rh
cl

 

 ⎝
⎛

⎠
⎞m0ρ1(r) + 

4
3
 πρcar a3 N(t, r)  4πr2 dr . (7) 

 

Here m0 is the carbon atomic mass, ρ1(r) is the 
concentration of the carbon vapors, ρcar is the carbon 
density, and a and R0 are the radii of secondary and 
initial particle, respectively.  Applying the Bonnet 
formula5 to the right-hand side of Eq. (7) we obtain 
 

4
3
 πρcar (R0

3 $ R3(t)) = 
4
3
 π Rh

cl f(Rh
cl) + 

+ 
4
3
 π ξ3 (f(R) $ f(Rh

cl)) $ 
4
3
 π R3 f(R) , 

where 

f(r) = 
4
3
 π ρcar a3 N(r) + m0ρ1(r) ,   ξ ∈ [R, Rh

cl] . 

 

The function f(r) on a particle surface and on  
the external boundary of the halo of secondary particles 

takes the following values:  at r = Rh
cl all vapor already 

has been condensed and in this case  

f(Rh
cl) = 

4
3
 π ρcar a

3
 N(Rh

cl).  The condensation is absent 

on the surface of a particle;  therefore, at r = R(t),  
f(R) = m0ρ1(R) .  Then we obtain that dimensionless 

radius of the halo B = Rh
cl/R satisfies the relation 

 

B3 = 
⎣
⎡

⎦
⎤1 $ ⎝

⎛
⎠
⎞R(t)

R0

3
 T(B)

 (4/3) π a3 Ns(t, R1) T(R1/R)
 , (8) 

 

which holds for R0
3 f(R0) <   <  Rh

3 f(Rh
c).  Solving 

implicit equation (8), we may find the dependence of 
the halo radius B on the radius of the evaporating 
particle R(t), hence, on the time t. Using expression 
(8), let us estimate the maximum halo radius reached 
at R(t) = 0 (particle has been evaporated completely) 
 

Bmax
3   = 

3
4 πa3 Ns

 . 

 

For Ns ~ 1020
 m$3 and a ~ 5⋅10$9

 m the radius of a halo 
reaches maximum Bmax � 20.  Combined calculation by 
formulas (6) and (8) permits particular values for the 

efficiency factor of absorption K h
ab to be obtained.  We 

present numerical values of some parameters that are 
used in calculation.  So, for the complex refractive 
index m = 1.96 $ i1.01 and radius of a secondary 
particle a = 5⋅10$9 m, the imaginary part of 
polarizability is equal to Im(αd) = 3.75⋅10$26 m3.   
At R1 = 4R, the temperature of a medium at the  
point in which the phase transitions terminate, is  
equal to T(R1) = 3000 K, the number density of 
secondary particles Ns(R1) ~ 1020 m$3.  For the  
laser wavelength λ = 10.6 μm, R0 = 100 μm, and 
c0(Tsur = 4500 K) = 190, the efficiency factor of 
absorption, according to Eq. (6) is equal to  
 

K h
ab(B = 9) = 3.2 ,   K h

ab(B = 10) = 4.7 , 
 

i.e., it is comparable to the factor of light attenuation 
by a large particle. 

In Fig. 1 the time dependence of dimensionless 
cross-section of light absorption by a halo of secondary 
particles is shown for comparison obtained on the basis 
of numerical solution of a system of equations 
describing the processes of formation of secondary 
particles in the vicinity of evaporating particle.1   

After a short time from the beginning of 
evaporation (characteristic time of evaporation t ~ 3⋅10$

1 s), the absorption efficiency factor reaches fast the 
value comparable to the efficiency factor of attenuation 
by a large particle.  This is connected with fast 
reduction of mass (Δm ~ 4ρcar πR2dR) and formation of 
secondary particles. 
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FIG. 1.  Time dependence of the efficiency factor of 

light absorption by a halo of secondary particles for 

I0 = 2⋅108 W/m2, λ = 10.6 μm, and R0 = 100 μm. 
 

Let us proceed to consideration of the efficiency 

factor of light scattering by a heat-mass-halo Kh
sc.  In 

the Rayleigh-Hans approximation for a medium with 

the complex refractive index m = ng + nd + ind′   the 

factor Kh
sc is determined by the formula2 

 

Kh
sc = 

k2 R2

4
 
⌡
⌠

0

π

 

 
(1 + cos2θ) dcosθ × 

×

 

 

⌡
⌠

1

A
 

 
2(ng(z) + nd $ 1 + ind′)z 

sin⎝
⎛

⎠
⎞2kRz sin

θ
2

sin
θ
2

 

 

dz

2

. (10) 

Here, we took into account that ⏐ng $ 1⏐<   <  1, nd<   <  1.  
Using the dependence of temperature of a medium on 
the dimensionless radial distance z = r/R for 

expressions nd(T(z)) and nd′(T(z)) and integrating  
Eq. (9), we obtain the estimation from above for the 
efficiency factor of scattering 
 

Kh
sc ≤ 4(ng(Ts) $ 1)2 

(kR)2

2
 A4 + 4(n2(R1) + nd′

2(R1)) × 

× 
kR

2

2
 B

4 

⎝
⎛

⎠
⎞B

c0
 

2

p+1
+ 4(ng(Tsur)$1)nd(R1) ⎝

⎛
⎠
⎞B

c0
 

1

p+1
. (11) 

Here, A is the dimensionless radius of a heat halo,  
k = 2π/λ is the wave number;  Tsur is the surface 
temperature of evaporating particle.  The first term in 
Eq. (11) is the efficiency factor of light scattering by 
nonuniformly heated vapor-gas mixture, second term is 
the efficiency factor of light scattering by secondary 
aerosol.  The third term is caused by interaction 
between scattering media.  We designate three terms in 

Eq. (11) by Ksc
heat, Ksc

sec, and Ksc
int, respectively.  Let us 

consider the ratio of the efficiency factor of scattering 
by secondary particles to that of absorption by these 
particles 
 

Ksc 
sec

K h
ab = 2kRB ⎝

⎛
⎠
⎞B

c0
 (1 + p)

1

p+1
 nd(R1) T0T(R1) a1 . (12) 

 

For B = Bmax = 20, R = 100 μm, λ = 10.6 μm, p = 0.75, 
nd(R1) = 5⋅10$5, a1 = 0.58, and T(R1) = 3000 K ratio 

(12) assumes the value 
Ksc 

sec

K h
ab  � 0.01, which indicates 

predominant attenuation of laser radiation due to its 
absorption by secondary particles.  Let us estimate the 
ratio of the efficiency factor of light scattering by heat 
halo to that of light absorption by secondary particles 
 

Ksc 
heat

K h
ab  = 

(ng(Tsur) 
$ 1)2 kRA

4

2and′(T0) B3  ⎝
⎜
⎛

⎠
⎟
⎞c0(p 

+ 1)

B

1

p+1
 .  

 

At the surface temperature of evaporating particle 
Tsur = 4500 K, laser radiation wavelength λ = 10.6 μm, 
Bmax = 20, A = Amax = 45, R = 100 μm, 4(ng $ 1)2 = 

= 5⋅10$9, and nd′(T0) ~ 2.5⋅10$4 the  ratio 
Ksc 

heat

K h
ab  ~ 2. 

Thus, the above-presented calculations have shown 
that it is necessary to take into account the 
contribution of light scattering by a heat halo and 
absorption by condensed aerosol produced due to 
evaporation of carbon particles to attenuation of laser 
radiation.   

In Fig. 2, the dependence of the efficiency factor 
of light scattering by a thermal halo on the halo radius 
calculated on the basis of expression (11) is shown. 

 

 
FIG. 2.  Dependence of the efficiency factor of light 

scattering by a heat halo on the halo radius at 

T = 4500 K, R0 = 5 (1) and 10 μm (2). 
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