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Propagation of a laser beam limited in its diameter through a reactive aerosol 
under thermal blooming conditions is considered. Decrease of optical cross section of 
particles due to burning out is taken into account within the threshold approximation. 
The expression is obtained to describe the velocity of the aerosol ignition wave which 
allows for the refraction and diffraction distortions of the beam.  

 

When a high–power optical radiation propagates 
through an inflammable aerosol, clearing up of the medium 
connected with a decrease of the aerosol particles' size due 
to burning out can occur.1 At present nonlinear effects of 
clearing up have been studied in detail within the 
framework of Bouguer law approach.2 Actually, it was a 
question of a wide beam propagation when the diffraction 
divergence could be neglected. In Ref. 3 the case of 
propagation of a diverging beam far from caustic was 
considered but the divergence angle was a preset parameter. 
Propagation of limited beams was analyzed numerically in 
Ref. 4 for the case of sufficiently small particles of soot 
burning under kinetic regime.  

It is of interest to analyze qualitatively the influence 
of diffraction divergence caused by perturbation of the 
refractive index of a medium in the beam channel on the 
process of clearing up of the inflammable aerosol. In this 
paper the analysis is carried out within the approximation 
of quasioptics. It is shown below that within the parabolic 
equation approximation for the light wave amplitude one 
can separate the effects of Bouguer extinction and beam 
broadening due to diffraction and refraction.  

The light wave amplitude satisfies parabolic equation  
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where κ is the wave number, z is the coordinate along the 
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0
 is the 

extinction efficiency factor, a is the radius of an aerosol 
particle, and f(a, r, t) is the particle size distribution 
function which depends on time owing to nonlinear 
interaction. Equation (1) is not closed. It has to be 
supplemented with equations defining the dynamics of the 
volume aerosol extinction coefficient and field of the 
refractive index perturbations.  

Equation (1) is of Schrdinger equation structure. 
Therefore, the equation for the radiation intensity can be 
obtained in a way similar to derivation of the equation for 
probability density. Having taken a complex conjugation of 
Eq.(1) we obtain 
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By multiplying Eq. (1) by A* and Eq. (2) by A and 
summing them up we find 
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Hence, 

 
∂ I
∂ z

 = 
1

2 i κ
 (A* Δ

⊥
 A – A Δ

⊥
A*) – α I . (3) 

 
Here I = AA* is the radiation intensity. The first term in 
the right–hand side of Eq. (3) can be rearranged in the 
form 
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In relation (5) e

x
 and e

y
 are the unit vectors along the 

transverse coordinate axes. Using Eq.(4) we obtain 
 

∂ I
∂ z

 = div
⊥
 J – α I . (6) 

 
If the transverse energy flux across the beam axis can be 
neglected, the relation (6) is reduced to Bouguer law 

 
∂ I
∂ z

 = – α I . (7) 

 
Just within this approximation the main results for 
radiation interaction with the inflammable aerosol were 
obtained. Refraction and diffraction effects are described by 
the term div

⊥
J which was earlier ignored.  

There are three characteristic dimensions along the 

beam path in this problem: l∂ = R
2

0

/λ, l
n
 = 1/α, 

l
p
= R

0
/(δ n)1/2. Let us estimate, by order of magnitude, 

characteristic values of these parameters for a carbon 
aerosol and a Gaussian beam of radius R

0
. For the aerosol 

concentration n ∼ 109 m–3 and characteristic size of 
particles ∼ 1 mm we have α ∼ 10–2 m–1, l

n
 ∼ 100 m. The 

diffraction length is l
∂
 ∼ 100 m for a laser emitting at 

λ = 1.06 μm for the beam radius R
0
 g 1 cm. Estimating 

δn as δn ∼ (n – 1)(ΔT/T), where ΔT is the mean 
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perturbation of the medium temperature within the beam, 
we obtain δn ∼ 10–8 and then l

p
 ∼ 100 m. For the above 

parameters the effects of refraction and diffraction 
distortions of the beam have the same order and become 
comparable with the Bouguer extinction effect at the paths 
about 100 m long. Hence, it is clear that the results of 
Refs. 2 and 3 are only applicable to the paths of a smaller 
length.  

It is of interest to try to separate out the extinction 
effects from the refraction and diffraction ones. Let us find 
the solution of Eq. (1) in the form 
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where 
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After substitution of Eq. (8) into Eq. (1), for the function 
ϕ(r, z) we obtain the equation 
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For linear interaction of radiation with a homogeneous 
aerosol when the state of the aerosol medium does not 
change, the last two terms in the right–hand side of Eq. (9) 
vanish. In this case the function ϕ(r, z) satisfies the 
diffraction equation in vacuum 
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which has an analytical solution  
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Here ϕ(R, 0) is the distribution of light wave amplitude at 
the beginning of the path. For a Gaussian beam the integral 
(10) can be calculated 
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One can see that for a linear problem the extinction 

effect is completely separated from the diffraction one. The 
diffraction in this approximation gives a contribution to a 
phase change and does not affect the beam intensity. This  

conclusion is rather obvious because in the absence of the 
refractive index perturbations the beam refractive 
distortions do not arise in a homogeneous aerosol.  

Let us now consider nonlinear interaction of radiation 
with an inflammable aerosol. Let the threshold approach1 be 
taken as a model of the burning process. In the threshold 
approximation the aerosol particles are assumed to be 
inflammable when intensity exceeds the threshold value 
I
thr 

. After the inflammation of a particle the dynamics of 

the volume extinction coefficient is proposed to be 
independent of the intensity and determined by the 
processes of heat exchange and mass transfer.  

First, some intensity distribution I(r, z) is formed in 
the space. The particles start to burn when r and z take 
such values that I(r, z) ≥ I

thr 
. The area occupied by 

burning particles is a body of rotation stretched along the 
direction of the beam propagation. For the Gaussian beam 
we find the equation of surface limiting the area of burning 
particles from the relation (11) 
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Here I

0
 is the beam intensity on its axis at the beginning of 

the path. From relation (12) the surface equation can be 
presented as a function r of z 
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During the burn–out of particles in the region where 

I(r, z) ≥ I
thr

 the extinction cross section decreases and the 

inflammation front moves forward along the path. Let us 
derive the equation determining the velocity of the 
inflammation front motion. From the condition of 
inflammation within the threshold approximation we have 

 

I
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 = ϕ(r, z
thr

) ϕ*(r, z
thr

) exp
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⎠
⎟
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Here z
thr 

= z
thr

(t) is the coordinate of the inflammation 

front. Let us introduce the velocity of the inflammation 

front ν(t) = 
dz

thr

dt  . It is clear that a change of the function 

α(r, z) at the point z is determined by the time of radiation 
action at this point with the intensity above the threshold 
one. Therefore, the function α(r, z) can be presented as the 
function α(r, t – τ(z)), where t is the time from the 
beginning of the action and τ(z) is the time of the threshold 
intensity I

thr
 appearance at the point z. By substituting the 

variable z = z(τ) dz = ν (t)dτ, we find from Eq. (14) 
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)  ϕ*(r, z
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)

I
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 = 
⌡
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0

t

 

 
α (r, t – τ) ν (τ) dτ . (15) 

 
Let us consider propagation of the inflammation front 

along the beam axis. In this case, according to Eq. (11), 
Eq. (15) takes the form 
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where the designation ϕ*(0, 0) ϕ(0, 0) = I

0
 is introduced. 

Equation (16) has a singularity at t = 0 (see also Refs. 2 
and 3). This singularity occurs because the light speed is 
assumed to be infinitely large in this approximation. 
Therefore, a certain layer of aerosol, z

0
, flashes 

simultaneously.  
Separating this singularity by the substitution  
 

ν(t) = z
0
 δ(t) + ν

0
 (t) , 

 

we find the regular integral equation to determine the 
velocity of the inflammation front 
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where z

0
 is determined from the condition  
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When particles burn in the diffusion regime, 

α(t) = α
0
 (1 – t/t

0
), α = 0 for t > t

0
. In this case, 

assuming that the function ν
0
(t) slightly changes on the 

interval [t – t
0
, t], when t > t

0
 we find  
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In Eq.(18) the velocity of the inflammation front has 
been found as a function of a coordinate along the path. 
A dependence of the velocity ν

0
 on time can be obtained 

now by an ordinary numerical integration. It is clear from 
Eq.(18) that the velocity ν

0
(z) monotonically decreases 

when z increases and vanishes at the point  

z
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Now let us consider propagation of the inflammation 
front out of the beam axis. In this case Eq. (17) takes the form 
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When t > t
0
 under the same assumptions on a slow change 

of the velocity ν
0
(t, r), we have  
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In this case the velocity ν
0
 does not decrease 

monotonically along the axis z since a diffraction in a 
certain region causes an increase in the radiation intensity. 
But for sufficiently long z the velocity begins to decrease 
and finally vanishes.  
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