
V.V. Dyomin and V.V. Sokolov  Vol. 8,  No. 8 /August  1995/ Atmos. Oceanic Opt.  641 
 

0235-6880/95/08  641-05  $02.00  © 1995 Institute of Atmospheric Optics 
 

HOLOGRAPHIC RECORDING OF OPTICALLY SOFT MICROPARTICLES. 

CALCULATIONAL PROCEDURE 
 

V.V. Dyomin and V.V. Sokolov 
 

Tomsk State University 
Received November 25, 1994 

 

The method is proposed being a basis for numerical calculation of the intensity 
distribution in the hologram plane, in holographic and magnified holographic images. 
Both transparent and opaque particles of an arbitrary shape can be considered as 
objects for holographing. The method can easily be adapted to basic holographic 
schemes. 

 
Holographic methods for recording volume ensembles 

of microparticles are used for studying aerosols in laboratory 
experiments,1 investigating the process of laser pulse 
interaction with a water drop,2 for diagnostics of natural 
aerosol media (mists, fogs, clouds),3,4 and so on. In practice 
in all works concerning holographic recording of 
microparticles, the particles are considered as opaque 
screens. It is justified since the hologram is normally 
recorded in a far zone because of small size of particles 

 

k a2 Ü z . (1) 
 

Here k = 2π/λ; λ is the radiation wavelength; z is the 
distance between a particle and the hologram; a is the 
particle size. If the condition 
 

k a ⏐n – n
0
⏐ . 1 (2) 

 

holds, the field refracted by a particle can be neglected in 
the far zone.5 In this case the hologram is believed to be 
formed only by the field diffracted by the particle central 
cross section and by the field of a reference wave as in 
the case of an opaque screen. Here n and n

0
 are the 

refraction indices of a particle and the medium, 
respectively. 

However, if the condition (2) does not hold, in 
calculating the intensity distribution in the hologram 
plane, not only the diffracted field but also the refracted 
one should be taken into account. The break of condition 
(2) may happen if (a) a recorded particle is small, a ≥ λ, 
or (b) a particle is optically soft, i.e. n ≈ n

0
. The case (a) 

is of no interest since the resolution of holographic 
methods is of the order of several micrometers (5–10) 
that corresponds to a . λ for the visible spectral range. 
The case (b) may take place in the case of suspensions 
(biological, medical, etc.). 

Moreover, the scheme with a transfer of images of 
microparticles to the hologram plane is most common 
now. In such a scheme, the condition of far zone (1) does 
not hold for some particles that also results in the 
necessity of taking into account the refracted field. 

Only few papers6,7 deal with the peculiarities of 
holographic recording of transparent and semitransparent 
particles, and the theoretical description of methods is 
given only for some particular cases. In this paper we 
propose a procedure for calculating the intensity in the 
hologram plane, in reconstructed and magnified 
holographic images of microparticles. This procedure can 
be applied to recording of optically soft particles of an 
arbitrary shape at arbitrary distances from the hologram. 

1. BASIC OPTICAL SCHEME 
 

The scheme shown in Fig. 1 is often preferable by 
experimenters (see, for example, Refs. 2 and 8) by a number 
of reasons. First, the objective 6 allows the distance to the 
ensemble under study to be increased that is required in 
many studies requiring contactless investigation. Second, 
the use of a mask 7, which cuts off the radiation passed 
without scattering by particles, provides for implementing 
the dark field method and thus improves the contrast of 
particle images. And, finally, the use of an off–axis scheme 
allows researchers to adjust the ratio of reference beam 
intensity to that of an object beam whatever the 
concentration of the ensemble under study is. 

 

 
FIG. 1. Basic optical scheme used in calculations: a laser 
(1), a semitransparent mirror (2), a mirror (3), beam 
wideners (4), a volume of disperse medium (5), an 
objective (6), an opaque mask (7), an image of medium 
volume (8), and possible positions of photorecording 
material (9', 9", and 9"'). 

 

Moreover, the procedure for calculating the intensity 
distribution in the plane of hologram recording for this 
scheme can easily be adapted for an ordinary off–axis 
hologram. To do this, the objective 6 and the mask 7 are 
removed from the scheme (and from the calculational 
algorithm). If the reference beam is also removed, then we 
have the axial scheme traditional for recording of 
microparticle ensembles. 

The hologram position 9", which is usual for 
holography of focused images, does not suit the case under 
consideration. This is because at the stage of reconstruction 
one part of the holographic image of a volume will be 
virtual whereas another one is real. To magnify the 
reconstructed microparticle images, the microoptics with a 
small depth of focus is used what arises some problems in 
studying virtual holographic images. 
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If at the stage of recording the hologram is at the 9′′′ 
position, then at the stage of reconstruction it is exposed to 
a conjugated reference wave to reconstruct the real image 
from it. Then the reconstructed image is positioned relative 
to the hologram as in the case 9′ (see Fig. 1). 

In this connection, the scheme shown in Fig. 1 with 
the hologram being at the position 9′ is the most general 
one, and it is expedient to construct the calculational 
procedure just for this case. 

 
3. RECORDING AND RECONSTRUCTION OF A 

HOLOGRAM 
 

In accordance with the previous section, the distances 
along the axis are related as follows 

 

1/z
0
 + 1/(z + Δ) = 1/F , (3) 

 

where F is the focal length of the optical system performing 
the image transfer. For simplicity we consider this system as 
a thin lens keeping in mind that when passing to a more 
complicated optical system the calculated intensity 
distributions will not change. 

Let the ensemble under study be illuminated with a 
plane wave of a unit amplitude and t(x

0
, y

0
) be the 

transmission coefficient corresponding to the medium layer 
in the plane (x

0
, y

0
) (or z = 0). Then in the hologram plane 

the object wave has the following form: 
 

u(x
2
, y

2
) = ⌡⌠ t(x

0
, y

0
) exp{(ik/2 z

0
)[(x

0
 – x

1
)2

 + (y
0
 – y

1
)2]} × 

× P
0
(x

1
, y

1
) exp[(– ik/2 F) (x2

1
 + y2

1
)] × 

× exp{(ik/2 z) [(x
1
 – x

2
)2 + (y

1
 – y

2
)2]} dx

0
 dy

0
 dx

1
 dy

1
 . (4) 

 
In Eq. (4) the constant factor is omitted, and all the 

below expressions will be written accurate to a constant 
factor. In Eq. (4) P

0
(x

1
, y

1
) is the function of the objective 

pupil 2 (Fig. 2), the fourth multiplier in Eq. (4) is the 
phase factor of a lens, and the expression (4) as a whole is 
the Kirchhoff integral in the Fresnel approximation for the 
considered system. Note that the presence or absence of a 
mask 7 in the optical arrangement shown in Fig. 1 is shown 
by the function t(x

0
, y

0
). 

 

 
FIG. 2. On the calculation of hologram recording and 
reconstruction: a volume of a disperse medium (1), an 
objective (2), a hologram (3), and reconstructed image of 
a medium volume (4). 

 

The reference wave is considered to be a plane wave 
(this coincides with the majority of experimental schemes): 

 

r = r
0
 exp(ik x

2
 sinθ) , (5) 

 

where θ is the angle between the directions of propagation 
of reference and object waves (Fig. 2). Then, as known, the  

intensity in the plane (x
2
, y

2
) of the hologram recording is 

described by the expression: 
 

I(x
2
, y

2
) = ⏐u(x

2
, y

2
)⏐2 + ⏐r(x

2
, y

2
)⏐2

 + u*(x
2
, y

2
) r(x

2
, y

2
) + 

 

+ u(x
2
, y

2
) r*(x

2
, y

2
) . (6) 

 

To allow for the extent of medium volume (marked as 
1 in Fig. 2) along z axis, it should be divided into 
monolayers. The division step Δz is governed by size and 
number density of microparticles. In this case it is assumed 
that particle mutual screening can be neglected. This 
assumption is justified for the case of holographic recording. 
Actually, the particle images reliably distinguishable against 
speckles are obtained at a small concentration of particles, 
when ensemble optical density σNl ≤ 0.1 what corresponds 
to 80% transparency of an ensemble.8 Here N is the particle 
number density, l is the layer thickness, and σ is the 
geometrical area of particle cross section. Then the object 
wave may be presented as follows: 
 

u(x
2
, y

2
) = ∑

j=1

m

 {uj(x2
, y

2
)} , (7) 

 

where uj(x2
, y

2
) is determined by Eq. (4) for jth particle, m 

is the number of particles in the layer, and intensity 
distribution in the hologram plane is written as 
 

I(x
2
, y

2
) = ⏐∑

j=1

m

 uj(x2
, y

2
) + r(x

2
, y

2
)⏐

2

 = 

 

= ∑
j=1

m

 ⏐uj⏐
2 + ∑

j≠i

 ui u j* + ⏐r⏐2 + r ∑
j=1

m

 u j* + r* ∑
j=1

m

 uj . (8) 

 

As known, for linear recording of a hologram the 

condition ⏐uj⏐
2 Ü ⏐r⏐2 must hold, therefore the term ∑

j≠i

 ui uj* 

can be neglected in some cases, and the expression (8) can be 
reduced to the sum of m holograms of the type  
 

I(x
2
, y

2
) = ∑

j=1

m
 {⏐uj⏐

2 + ⏐rj⏐
2 + u j* rj + uj r j*},  

 

where rj = r/m. In this paper we use this simplification in 

order to obtain analytically some results illustrating the 
method of calculation. However, in numerical calculations 
for optically soft particles this term should be taken into 
account. 

When illuminating the recorded hologram by the 
initial reference wave r, only the wave ur*r = ur2

0
 

propagates along z axis, therefore the field in the 
reconstructed image is calculated by the expression similar 
to Eq. (7). Thus, the field in the plane corresponding to the 
image of the plane z = 0 is expressed as 

u(x
3
, y

3
) = ⌡⌠ t(x

0
, y

0
) exp{(ik/2 z

0
)[(x

0
 – x

1
)2

 + (y
0
 – y

1
)2]} × 

 

×
 
P

0
(x

1
, y

1
) exp[(– ik/2 F) (x2

1
 + y2

1
)] × 

 

×
 
exp{[ ik/2 (z + Δ)] [(x

1
 – x

3
)2

 + (y
1
 – y

3
)2]}dx

0
dy

0
dx

1
dy

1
. 9) 

 

Here the linear recording of hologram is assumed. By 
varying Δ and substituting t(x

0
, y

0
) into the corresponding 

plane of a volume studied, the field distribution can be 
calculated in any plane of a holographic image. 
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Let us consider the case P
0
(x

1
, y

1
) = 1, as an example. 

Then such calculations can be performed analytically, and 
for the object plane z = 0 we obtain 

 

u(x
3
, y

3
) = t[– (x

3
 z

0
)/(z + Δ), – (y

3
 z

0
)/(z + Δ)] × 

×
 
exp[ ik (x2

3
 + y2

3
)/2(z + Δ – F)]. (10) 

 

As expected, in the image we obtain the initial object 
with the transmittance t, and the magnification z

0
/(z + Δ) 

is determined by the properties of the objective 2 (Fig. 2). 
As to the phase factor, it disappears when passing to the 
intensity. 

 
3. STUDY OF THE HOLOGRAPHIC IMAGE 

 
To find the parameters of an ensemble under study, 

the holographic image is studied with the help of a 
magnifying system 5 (Fig. 3). A microobjective is most 
commonly used for that, and the magnified image 6 is 
projected to the eye retina (using an ocular), photographic 
plate, CCD, or photodiode matrix, depending on the 
problem to be solved. 

In Fig. 3 the plane (x
5
, y

5
) corresponds to the central 

plane (x
3
, y

3
) of the volume holographic image and, 

consequently, to the plane (x
0
, y

0
) of an object (or the 

plane z = 0, see Fig. 2). Obviously the distances Δz, Δ, and 
δ are related to each other. This allows us by varying only 
one of these distances to automatically change two others. 

 

 
FIG. 3. On the calculation of magnified holographic 
image: a reconstructed image (4), a magnifying optical 
system (5), and a magnified image (6). 
 

The field in the plane (x
6
, y

6
) can be written as  

 

u(x
6
, y

6
) = ⌡⌠ u(x

3
, y

3
) exp{(ik/2 d)[(x

3
 – x

4
)2

 + (y
3
 – y

4
)2]} × 

 

× P(x
4
, y

4
) exp [( – i k/2 f) (x2

4
 + y2

4
)] × 

 

× exp {(ik/2 D) [(x
4
 – x

5
)2 + (y

4
 – y

5
)2]} × 

 

×exp{(ik/2δ)[(x
5
 – x

6
)2

 +(y
5
 – y

6
)2]}dx

3
dy

3
dx

4
dy

4
dx

5
dy

5
. (11) 

 

Here f is the focal length of the system 5 (Fig. 3). 
Integrating with respect to x

5
, y

5
 yields the following 

expression (accurate to the constant factors): 
 

u(x
6
, y

6
) = ⌡⌠ u(x

3
, y

3
) exp[(ik/2 d) (x2

3
+y2

3
)] × 

 

×
 
P(x

4
, y

4
) exp[(ik/2 L) (x2

4
 + y2

4
)] × 

 

×
 
exp{(– ik) [ x

4
 [x

3
/d + x

6
/(D + δ)] +y

4
[y

3
/d+y

6
/(D+δ)]]} × 

×
 
exp{[ik/2(D+δ)] (x2

6
+y2

6
)} dx

3 
dy

3
 dx

4
 dy

4
 , (12) 

 

where  
 

1/L = (f D δ + f D2
 – dDδ – dD2

 + dfD)/[dfD (δ + D)]. (13) 
 

For δ = 0, 1/L = 1/d – 1/f + 1/D = 0 and in the plane 
(x

6
 = x

5
, y

6
 = y

5
) we obtain the expression: 

 

u(x
6
, y

6
) = ⌡⌠ u(x

3
, y

3
) exp[(ik/2 d) (x2

3
 + y2

3
)] P(x

4
, y

4
) × 

 

×
 
exp{(– ik) [ x

4
 (x

3
/d + x

6
/D) + y

4
 (y

3
/d + y

6
/D)]} × 

 

×
 
exp{(ik/2D) (x2

6
 + y2

6
)}dx

3
dy

3
dx

4
dy

4
=exp{(ik/2D)(x2

6
 + y2

6
)}× 

 

× ⌡⌠ u(x
3
, y

3
) exp[(ik/2 d) (x2

3
 + y2

3
)] × 

 

×
 
G[(1/λ) (x

3
/d + x

6
/D), (1/λ) (y

3
/d + y

6
/D)] dx

3
 dy

3
. (14) 

 

Assuming, as before, that (x2
3
 + y2

3
)/λd Ü 1, the final 

expression can be written for the field u(x
6
, y

6
) where the 

integrand is the field u(x
3
, y

3
) and Fourier transform of a 

pupil of the microobjective 5 (Fig. 3) or, in other words, 
the convolution of the field u(x

3
, y

3
) reconstructed from the 

hologram with the pulse response G of a microobjective 5. 
In the case δ ≠ 0 the expression (14) does not change in 
structure, but the Fourier transform of a generalized 
function of a pupil of the objective 5 
P′(x

4
, y

4
)exp[(ik/2L)(x2

4
 + y2

4
)] will be present in it. 

So, the calculational expressions presented in this 
section allow the field and intensity distributions in the 
hologram plane to be calculated in the region of 
reconstructed and magnified images. In so doing, the 
functions t(x

0
, y

0
), P

0
(x

1
, y

1
), and P

1
(x

4
, y

4
) should 

naturally be given in their concrete forms. 
It should be noted that these expressions can be used for 

both opaque "rigid" particles (obeying the condition (2)) and 
optically soft particles. The type of particles is allowed for by 
calculating the particle transmission function t(x

0
, y

0
). 

 
4. CALCULATION OF TRANSMISSION 

FUNCTION OF A TRANSPARENT PARTICLE  
 

For the case of optically soft particles the reflection from 
the medium/particle interface can be ignored in calculations. 
Here we consider the case of a transparent particle, therefore 
the absorption can be ignored too. For the case of a 
semitransparent particle the absorption is easily calculated. 
The main idea of calculational procedure is identical to that in 
Ref. 7, where the authors have calculated the field scattered 
by a particle assuming that this field propagates from the 
central particle cross section (x

0
, y

0
). 

This idea provides a possibility of using the diffraction 
integral in calculation. The only difference is that in our 
calculations the phase shift within the particle is calculated 
directly from the ray geometry, whereas in Ref. 7 it was 
taken into account via the factor describing the aberrations. 
This is why the method from Ref. 7 is not applicable to 
particles of a complificated shape. In addition, in our 
calculations we assume that the field scattered by a particle 
propagates from the plane tangent to it (the plane z = a

2
 in 

Fig. 4). In the case when, in the selected monolayer of the 
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medium, there are particles of different size, this plane is 
chosen to be tangent to the largest particle. 

 

 
FIG. 4. On the calculation of transmission function of a 
transparent particle. 
 

Let us perform the calculation for a 2D case, since it 
can be easily generalized to the 3D case. Shown in Fig. 4 is 
a particle of an arbitrary shape, n

0
 and n are the refraction 

indices of the medium and the particle, respectively, the 
particle is illuminated with a plane wave of a unit 
amplitude and the ray vector S

0
. The plane z = 0 passes 

through the central cross section, whereas the planes z = –
a

1
 and z = a

2
 pass through the outer points of a particle. 

The plane z = –a
1
 is, in this case, the wave front of the 

illuminating wave. 
Let us consider the beam passage through such a 

particle. The segment AB is the path δ
1
 passed by an 

incident wave from the plane z = –a
1
 to the particle 

boundary, the segment CM is the path δ
3
 passed by the 

refracted wave from the particle boundary to the plane 
z = a

2
, and the segment BC is the path δ

2
 passed inside the 

particle; S
0
, S, and S

1
 are the corresponding ray vectors. 

We present the field at an arbitrary point of the plane 
z = a

2
 as u(x

0
, z) = exp[(iϕ(x

0
)], where  

ϕ(x
0
) = ϕ(z = – a

0
) + 2π/λ [(δ

1
 + δ

3
) n

0
 + δ

2
 n]. (15) 

 

Then, to find the phase ϕ(x
0
), it is necessary to calculate 

the distances δ
1
, δ

2
, and δ

3
 knowing the shapes of surfaces 

(in the considered 2D case, the curves) z
1
(x

0
) and z

2
(x

0
)(see 

Fig. 4). Since the plane z = a
2
 is positioned immediately 

adjacent to the particle, there are no diffraction effects and 
we deal with the geometrical approach. 

Let us consider the ray passing through the points 
B(x

01
, z

1
(x

01
)) and C(x

02
, z

2
(x

02
)). It is easy to determine 

the distance δ
1
 as 

 

δ
1
 = z

1
(x

01
) – a

1 
. (16) 

 

For the case of known z
1
 = z

1
(x

0
) and using standard 

methods of analytical geometry, we can express the unit 
vector of the normal to the first surface in the form: 

 

n
1
 = i sin α

1
 + j cos α

1
 , (17) 

 

then we can determine the ray vector S
1
: 

 

S
1
(x

01
) = i sin γ

1
 + j cos γ

1
 ; (18) 

γ
1
 =

 
α

1
 – β

1
;  sin α

1
 = (n/n

0
) sin β

1
 . (19) 

 

If γ
1
 is known, the distance δ

2
 can be easily found: 

 

δ2
2
 = (x

01
 – x

02
)2 + (z

1
(x

01
) – z

2
(x

02
))2, (20) 

δ
2
 =

 
(x

01
 – x

02
)/sin γ

1
 . (21) 

 

Note that the segment δ
2
 can be presented as a 

function of a single coordinate (x
01

 or x
02

), since Eqs. (20) 

and (21) allow one coordinate to be unambiguously 
expressed via the another one:  
 

sin γ
1
 = (x

01
 – x

02
)/ (x

01
 – x

02
)2 + (z

1
(x

01
) – z

2
(x

02
))2 , (22) 

 

if sinγ
1
 is known. 

With the account for the shape of the curve z
2
(x

0
) and 

having determined the normal vector n
2
 at the point 

(x
02

, z
2
(x

02
)), it is possible to calculate the ray vector of a 

ray emerging from the particle: 
 

S(x
02

) = i sin γ + j cos γ , (23) 
 

where  
 

γ = γ
1
 + (β

2
 – α

2
), n sin α

2
 = n

0
 sin β

2
 . (24) 

 

Then the segment δ
3
 is equal to 

 

δ
3
 = (x

02
 – x

03
)/sin γ . (25) 

 

Moreover, similarly to Eq. (22) the relation between x
02

 

and x
03

 can be written as: 
 

sin γ = (x
02

 – x
03

)/ (x
02

 – x
03

)2 + (z(x
02

) – a
2
)2 (26) 

 

Let us return now to the 3D case. The proposed 
calculational procedure allows the field refracted by a 
particle, u(x

0
, y

0
), to be found in the plane (z

0
 + a

2
). 

Naturally, in this procedure of calculation the factor ik/2z
0
 

in the first exponent in Eq. (4) should be replaced by 
ik/2(z

0
 – a). 

Let t
s
(x

0
, y

0
) be the function describing the particle 

cross section ( the particle shadow function): 
 

t
s
(x

0
, y

0
) = {  1  – inside the particle cross section,

0  – outside the particle cross section.  

 

Then the transmission function, which should be substituted 
into the diffraction integral (4), has the following form: 
 

t(x
0
, y

0
) = t

s
(x

0
, y

0
) + u(x

0
, y

0
) . (27) 

 

If there is no the opaque mask 7 in the scheme shown in 
Fig. 1, the expression (27) takes the form: 
 

t(x
0
, y

0
) = 1 – t

s
(x

0
, y

0
) + u(x

0
, y

0
) . (28) 
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Let us illustrate the procedure for calculating the 
particle transmission function by a simple example. Let the 
particle have a shape of a hemisphere shown in Fig. 5 and 
be in the air, i.e. n

0
 = 1. 

 

 
 

FIG. 5. On the calculation of transmission function of a 
hemispherical particle. 

 
The procedure of calculation of the field in the plane 

z = R in this case reduces to the determination of the 
segment AB 

 

δ
2
 = R2 – (x

02
)2 (29) 

 
and the segment BC 
 

δ
3
 = (x

03
 – x

02
)2 + ( )R – R2 – (x

02
)2 2 , (30) 

 
where the coordinates x

02
 and x

03
 are related to each other as 

 

sin γ =(x
02

/R)( )n 1–(x
02

)2/R2– 1 – (n x
02

)2/R2 ; (31) 

 

sinγ = (x
03

 – x
02

)/ (x
03

– x
02

)2
 +( )R– R2– (x

02
)2 2. (32) 

 
Here the expression (31) is obtained based on the law of 
refraction on spherical surface whereas equation (32) is 
determined by the geometry of the picture. Having 
expressed x

02
 via x

03
 and substituting it into Eqs. (29) 

and (30), we obtain δ
2
 = R – (x

03
)2/2R and  

δ
3
 = (x

03
)2/2R. For the field distribution in the plane 

z = R in paraxial case, we obtain, as could be expected, 
the following result: 

 

u(x
03

, z) = exp 
⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

ik 
⎣
⎢
⎡

⎦
⎥
⎤

Rn
 
–

 
⎝
⎛

⎠
⎞(x

03
)2

2 R (n – 1)  

 

The distribution obtained is the field of a spherical 
wave, written in paraxial approximation, converging to the 
point placed on z axis at a distance R/(n – 1) from the 
plane z = R, i.e. at paraxial focus of the considered lens. 

 
CONCLUSION 

 
The method proposed can be the basis for numerical 

calculation of intensity distribution in the hologram plane 
in both holographic and magnified holographic images. The 
calculations can be performed both for the cases when the 
particle coordinate is an origin of a coordinate system and 
when the coordinate of the magnified holographic image of 
a particle is used for this. Both opaque and transparent 
particles of an arbitrary shape can be considered. The 
procedure can easily be adapted to the main holographic 
schemes. In development of the method we took two 
simplifying assumptions: (a) only the case of single 
scattering is considered and (b) the radiation reflected by 
particles is excluded from the consideration. Both these 
simplifications are in agreement with the majority of 
practical situations taking place in holographic recording of 
microparticles. 
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