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An approach is proposed to the investigation of the sensitivity of models of 
conservative pollutant transfer through the atmosphere based on stochastic 
interpretation of the model parameters and the results of measurements. An inverse 
problem of pollutant transfer has been considered and a procedure for investigating 
the sensitivity of its solution to variations of the results of measurement of the 
pollutant concentration induced by a stationary local source has been described. The 
proposed procedure can be generalized for the case of several local sources operating in 
both stationary and pulsed regimes. 

 
Problems of investigation of the characteristics of 

pollutant transfer models in the atmosphere are of 
fundamental importance from both theoretical and applied 
standpoints. The urgency of a solution of such problems is 
primarily conditioned by a wide use of pollutant transfer 
models when solving direct and inverse problems of 
ecological monitoring. 

By the direct problem is meant determining the 
concentration of a certain component at some fixed time 
with the given initial and boundary conditions for the 
known function of strength of a pollutant source. 

The inverse problem is considered to mean determining 
the strength field of pollutant sources from the known 
concentration field, induced by these sources, with the 
given boundary conditions. Depending on the available 
a priori information about the pollutant sources, the inverse 
problem can be formulated as the problem for determining 
the position of emission sources or as the problem for 
determining the strength of these sources. In general (for 
the lack of a priori information), both characteristics must 
be determined.  

The data obtained as a result of solution of the above 
problems are used to construct models of social and economic 
development of regions and to perform ecological expertise of 
projects of social development. Clearly, the quality of 
administrative decisions on these problems is determined in 
many respects by the accuracy and reliability of model results. 
However, despite a large body of studies devoted to the 
problems of construction and numerical realization of models 
of pollutant transfer (see, for example, Ref. 1), the 
consideration of the model sensitivity to variations of the 
initial data, that is, substantiation of the degree of reliability 
and accuracy of the results, remains beyond the scope of the 
analysis. 

In Ref. 2, some estimates of the sensitivity of a 
solution of inverse problem to the variations of the model 
parameters were obtained on the basis of a deterministic 
approach. However, because the true values of the 
parameters are unknown to us, the variation of a certain 
model parameter cannot be determined as well. Hence, 
based on the above approach it is impossible to evaluate 
the accuracy of the problem solution. We think that we 
can gain a better understanding of the degree of solution 
sensitivity by way of stochastic interpretation of the 
problem, that is, based on the consideration of the model 

parameters, initial data, and results of problem solution as 
random variables. 

This paper describes a procedure for investigation of 
the sensitivity of a solution to inverse problem of pollutant 
transfer in the atmosphere for a single source of pollutant 
operating in a stationary regime. 

 
FORMULATION OF THE DIRECT PROBLEM 
 
Let in a certain rectangular region A, some tens of 

kilometers in extent along the x and y axes, at the point 
(x

0
, y

0
, z

0
), a source of pollutant be located with the 

strength function f(t) of the form: 
 

f = f(t) = 
⎩
⎨
⎧

 

0, t < t
0 
,

Q = const, t ≥ t
0 
.  (1) 

 
The concentration of pollutant c at a certain time t > t

0
 is 

required. 
To solve this problem, we use the kinematic model of 

pollutant transfer proposed in Ref. 3. In this model, the 
main physical processes, strongly affecting the formation of 
the pollutant concentration field, have been taken into 
account. The equations of the model in the z–system of 
coordinates are written as follows:  

 
∂ c
∂ t

 + V grad c – ∇s(μ ∇s c) – 
∂

∂ z
 ν 

∂

∂ z
 + 

1
ρ
 (Ic + I *c) = f , (2) 

 
where c is the specific concentration of pollutant; 
V = (u, v, w) is the vector of the wind velocity; μ and ν 
are the coefficients of turbulent diffusion of pollutant in 
horizontal and vertical directions, respectively; Ic and I*c 

are the functions describing the generation and sink of 
pollutant in the course of transformation processes; 

∇s = 
∂

∂x
 i + 

∂

∂y
 j . 

The use of the kinematic model is justified when solving 
the problem on the transfer of conservative pollutant, i.e., the 
pollutant which leaves the thermobaric structure of the 
atmosphere unaffected. Therefore, the coefficients of turbulent 
exchange and the wind velocity are the input parameters of 
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the model. They can be either determined from the 
measurement data or calculated with the use of a certain 
model. The pollutant will be considered produced solely by a 
source, i.e., Ic = 0. 

The lower boundary of the solution domain is the 
underlying surface where the following formalization of 
interaction of the pollutant with the boundary is justified4: 
 

ν 
∂ c
∂ z

 
z = 0

= ks 
⎝
⎛

⎠
⎞c 

 
z = 0

– cs + Qs , (3) 

 

where cs is the concentration of pollutant above the 

underlying surface, which ensures the equilibrium state of 
exchange process; ks is the coefficient of exchange, 

describing the type of soil, character of plant canopy, and 
temperature; Qs is the rate of pollutant flow from the 

underlying surface to the atmosphere. 
The tropopause is chosen as an upper boundary. This 

choice is physically justified since the tropopause is a thick 
barrier layer, at the lower boundary of which the following 
condition can be set5: 

∂ c
∂ z

 
z = z

t

= kc 

⎝
⎜
⎛

⎠
⎟
⎞c

st
 – c 

 
z = z

t

, (4) 

 

where z
t
 is the altitude of the tropopause taken to be 10 km 

in the model; kc is the exchange coefficient; c
st
 is the 

equilibrium concentration of pollutant in the stratosphere. 
The lateral boundaries of the solution domain are 

open. Here, the following boundary conditions are laid 
down. For a region of boundaries where the air inflow 
occurs, it is assumed that 

c
 
= 0 , (5) 

and for a region of the boundary where the air outflow 
occurs  
∂ c
∂ n

 = 0 , (6) 

 

where 
∂ c
∂ n

 is the derivative of c with respect to the outward 

normal to the solution domain. 
The initial condition is the absence of pollutant in the 

atmosphere, that is,  
 

c  
t = t

0

 = 0 . (7) 

 

This condition is chosen for simplicity of the analysis of 
the pollutant transfer from the source under 
consideration. 

Parametrization of the processes on subgrid scale 
described by the function I*c, namely, of self–induced 

raising of aerosol, its washing out, and sedimentation, is 
realized with the use of the formulas given in Ref. 3. 

For numerical solution of equation (2), we use the 
separation technique for physical processes. We consider only 
the process of advection of pollutant at the first stage, and 
turbulent diffusion – at the second stage. At the third stage, 
the equation is solved describing transformation processes. At 
the step of advection, the TVD scheme3 is used, whereas at 
the step where the turbulent exchange is considered we use the 
implicit scheme together with separation technique for spatial 
coordinates. 

 
 

FORMULATION OF THE INVERSE PROBLEM 

 
Let a pollutant source be located in the rectangular 

region A discussed above at a certain point X
0
 = (x

0
, y

0
, z

0
) 

with a known coordinate z
0
, with the source strength given 

by Eq. (1). In this case the parameters Q and t
0
 are 

unknown. The horizontal coordinates of the source x
0
 and 

y
0
 and its strength Q are to be determined from the results 

of three measurements of the concentration of pollutant at 
some points Xi = (xi, yi, zi), i = 1(1)3. It should be noted 

that since the time t
0
 at which the source starts to operate 

is unknown, the problem can be solved only when 
 

∂ ci

∂ t
 

ts

= 0,  i = 1 (1) 3 , 

 

where ci is the concentration of pollutant at the ith point. 

In addition it is assumed that before the start of the source 
operation the pollutant was absent at all the points of the 
region A, that is, c = 0 at t < t

0
. 

To solve this problem, we use the technique of the 
adjoint equations. Following Ref. 2, we obtain the model 
conjugate to Eq. (2): 
 

∂ c*
∂ t

 + V grad c* – ∇ μ ∇ c* – 
∂

∂ z
 ν 

∂ c*
∂ z

 + 
1
ρ
 I *c  = f * . (8) 

 

The boundary conditions at the lower boundary are of 
the following form: 
 

ν 
∂ c*
∂ z

 
z = 0

= ks 
⎝
⎛

⎠
⎞c* 

 
z = 0

– cs + Qs , (9) 

 

and at the upper boundary they are 
 

∂ c*
∂ z

 
z = z

t

= kc 

⎝
⎜
⎛

⎠
⎟
⎞c

st
 – c* 

 
z = z

t

. (10) 

 

In the region of lateral boundary where the air inflow 
occurs, they are 
 

c* = 0 , (11) 
 

and in the region of the lateral boundary where the air 
outflow from the domain of solution is observed, they are  

μ 
∂ c*
∂ n

 + u
n
 c* = 0 , (12) 

 

where u
n
 is the component of the wind velocity normal to 

the boundary of the solution domain. 
The initial condition is c* = 0 at t = ts. 

Let everywhere, except for a certain point 
Xi = (xi, yi, zi), be f * = 0. At the point Xi we set f * as 

follows: 
 

f * = f(t) = 
⎩
⎨
⎧

 

1, t ≥ t
s 
,

0, t < t
s 
.  (13) 

 

Let us integrate Eq. (8) with the indicated boundary 
and initial conditions until the steady state, that is, until 
the condition 
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∂ c*l
∂ t

 = 0 ,  X ∈ {A} (14) 

 

be fulfilled. In this case c*l  = c*l(x, y, z), where c*l  is the 

solution of the problem given by Eqs. (8)–(12) provided 
that f* is set as shown above. 

The function c* can be treated as the degree of 
sensitivity of the equilibrium concentration of pollutant at 
the point Xl to the operation of a point stationary source of 

pollutant located at a certain point of the region A, and the 
quantity 1/c l*(x, y, z) can be treated as the strength of a 

source located at the point (x, y, z) that at the point Xl 

induces the equilibrium concentration of pollutant being 
equal to unity. Then, owing to the linearity of the problem, 
 

φl(x, y, z) = 
cl

c*l(x, y, z) (15) 

 

is the strength of a point stationary source located at the 
point (x, y, z) that at the point Xl induces the equilibrium 

concentration of pollutant cl . 

Since the adjoint problem2 has unique solution, using 
a priori information contained in the formulation of the 
problem we obtain that unique point X

0
 can be found in the 

region A for which 
 

φ
1
(x

0
, y

0
, z

0
) = φ

2
(x

0
, y

0
, z

0
) = φ

3
(x

0
, y

0
, z

0
) = Q. (16) 

 

The coordinates x
0
 and y

0
 and the parameter Q are the 

solution of the formulated inverse problem. 
Since the problem described by Eqs. (8)–(12) is solved 

numerically with the use of the method applied in solving 
of the direct problem, the condition for finding solution 
(16) takes the form 
 

(x
0
, y

0
) = arg

(x, y)

min{(φ
1
(x, y, z

0
) – φ

2
(x, y, z

0
))2

 + (φ
1
(x, y, z

0
) – 

 

–
 
φ
3
(x, y, z

0
))2 + (φ

2
(x, y, z

0
) – φ

3
(x, y, z

0
))2} , (17) 

 

Q = 
1
3 (φ*

1
 + φ*

2
 + φ*

3
) , (18) 

 

where 
 

(φ*
1
, φ*

2
, φ*

3
) = arg

(φ
1
, φ

2
, φ

3
)

min{(φ
1
(x, y, z

0
) – φ

2
(x, y, z

0
))2 + 

 

+ (φ
1
(x, y, z

0
) – φ

3
(x, y, z

0
))2

 + (φ
2
(x, y, z

0
) – φ

3
(x, y, z

0
))2} (19) 

 

and (x, y) are the coordinates of grid nodes. 
 

PROCEDURE FOR INVESTIGATION OF THE 
SENSITIVITY 

 
In deterministic approach to the investigation of the 

sensitivity, as a degree of sensitivity of the problem solution 
to variations of a certain parameter we take the value of the 
derivative of the solution with respect to this parameter. In 
this case, the derivative is treated in a classical sense when 
analyzing its sensitivity to the scalar parameters or in the 
Gato sense in the case of parameter–functions. However, as 
has already been noted, it is impossible to make a 
constructive judgement on the degree of the solution 
accuracy, since the model parameters and the results of 
measurements are random variables, whose realization is 
known with a certain unknown error. In this connection, it 

is appropriate to consider the results of solution of the 
problem as a certain random variables (random field) and to 
use, when analyzing the sensitivity of problem solution, 
methods of the theory of probability and mathematical 
statistics. 

In the above approach, the dependence of the problem 
solution on the distribution of the corresponding parameters 
should be used as a measure of sensitivity. The dependence 
of a certain characteristic of the solution distribution on the 
characteristics of the parameter distribution also can be used 
as such a measure. We propose to use the length of an 
interval (the volume of the domain for vector solutions) 
within which the problem solution falls with a given 
probability for the given distribution of the affecting 
parameter. With this choice of the measure, it is possible to 
analyze the sensitivity to an individual parameter and to 
estimate the comparative degree of influence of different 
parameters on the accuracy of solution. For an analysis of 
the influence of errors in determining the parameters on the 
reliability of solution, the probability of falling of the 
solution within the interval of a certain length for a given 
parameter distribution serves as a measure of sensitivity. 

If the problem is linear and only one parameter is 
random, the problem of investigation of the sensitivity 
considerably simplifies. Actually, in this case the problem 
solution is a linear function of the parameter and, hence, 
obeys the distribution of the same type as the parameter 
does. The distribution characteristics can be determined 
with the use of the known formulas of the probability 
theory. With the use of the above characteristics, we can 
easy calculate the above measures of sensitivity of the 
accuracy and reliability of the solution. The situation 
changes abruptly in the nonlinear case, in which we need 
the apparatus of mathematical statistics, in particular, the 
method of imitational simulation to perform investigations.  

We illustrate the suggested procedure in an example of 
investigation of sensitivity of the above–formulated inverse 
problem of pollutant transfer in the atmosphere. The 
influence of errors in measuring the concentration of 
pollutant on the accuracy and reliability of determination of 
the source position and strength will be analyzed.  

The first stage is the simulation of realization of 
solution of the inverse problem. First we simulate the 
realization of the results of measurements. We write down 
the result of measurement as follows:  
 

c
∧

i = c
–

i + δ
∧

c , (20) 
 

where ci is the mathematical expectation of the 

measurement result at the ith point, and δc is the 

measurement error. 
The mathematical expectation of the measurement 

result at a certain point is the result of solution of the 
direct problem described above. When simulating the 
measurement errors, the following assumptions are 
introduced: 

– systematic error vanishes; 
– measurement errors at different points are 

uncorrelated; 
– measurements are equally accurate; 
– error is distributed by the normal law. 
Since in nominal data of measuring devices only the 

relative error is indicated, the standard deviation of the 
measurement error is determined from the rule of three 
sigma. 

For simulating the error we use the standard procedure 
of statistical simulation of normally distributed random 
variable. Having simulated the measurement errors at all 
three points and having added to them the concentration of 
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pollutant derived by solving the direct problem, we obtain 
the realization of the vector of measurement results. 
Having solved the inverse problem with these initial data, 
we derive the realization of solution of the inverse 
problem. This procedure is repeated until the sample size 
reaches the required value (conventionally, some 
hundreds). 

An interval variation series is constructed with the 
use of the above sample, and the law of distribution of 
solution results is estimated. For this purpose, the 
following operations are done. We estimate the square 
asymmetry and the excess of distribution of the solution 
results. The hypothesis on the distribution law of the 
solution results is set up on the basis of the asymmetry–
excess diagram. This hypothesis is tested with the use of 
the chi–square criterion. When the hypothesis is true, the 
parameters of this distribution law are estimated from the 
sample data. 

The next stage is the direct estimate of the solution 
sensitivity. To do this, the accuracy of the solution is 
specified by the value of its validity (probability of 
falling of the solution within a certain interval). The 
length of this interval is determined using the table of 
distribution of the solution. In doing so the interval can 
be selected by two ways, namely, as the interval of 
minimum length or as the interval located in such a way 
that the probabilities of solution falling to its right and 
to its left are the same. 

 

When estimating the sensitivity of solution validity to 
the accuracy of measurement, the concentration of pollutant is 
specified by the length of interval within which this solution 
must fall, and then the probability of this falling is 
determined. The interval also can be chosen by two ways: as 
an interval maximizing the probability of solution falling 
within it or as an interval located so that the probabilities of 
solution falling to its right and to its left are the same. 

The proposed procedure can be generalized for the case of 
several sources and can be applied to the investigation of the 
solution sensitivity to variations of the other parameters, for 
example, the wind velocity. In this case, it is necessary to 
simulate the random field, i.e., the wind velocity field. 
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