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An original approach is proposed to the problem of reconstructing 
mesometeorological fields in the territories uncovered with observational data, which 
is based on the optimum combination of alternative techniques for spatial prediction. 
Some grounding in theory of appropriate mathematical methods, such as polynomial 
fitting, optimal extrapolation, and modified method of clustering of arguments 
(MMCA) are examined along with an integrated algorithm for spatial prediction of 
vertical profiles of temperature and wind velocity. 

 
1. INTRODUCTION 

 
An important problem in modern mesometeorology is 

reliable and adequate reconstruction of vertical structure 
of mesometeorological fields for regions with coarse (or 
no) aerological network using atmospheric sensing data 
for adjacent territories. An optimal solution of this 
problem is necessary for many applications, among which 
are: 

– estimation of the spatial spread of industrial 
pollutants in air basins of local areas (such as an 
industrial zone or an entire region), which is determined 
by the temperature stratification, influencing the 
turbulent diffusion of pollutants, and the detailed wind 
regime inside that territory; 

– numerical prediction of mesoscale processes (on 
horizontal scale of several tens or hundreds of kilometers) 
and their associated weather for individual regions and 
locations; 

– optimal arrangement of lidar network to be 
employed for atmospheric monitoring of bounded 
territories, either on local or regional scale, i.e., 
territories whose horizontal dimensions vary from 50 to 
300 km (Ref. 1). 

In practice, however, the optimal reconstruction 
(spatial prediction) of vertical structure of 
mesometeorological fields faces a number of problems. 

First, the existing world aerological network is 
extremely nonuniform and coarse (even Europe and North 
America, most extensively covered with observational 
data, have closest stations spaced about 300–400 km 
apart), and obviously does not meet the requirements for 
an objective analysis of mesometeorological fields (i.e., 
their construction based on observational data and a 
certain numerical algorithm). In particular, to make 
reliable regional and local weather forecasts, one needs 
aerological observational data at the nodes of a grid 
whose horizontal step size varies from 50 to 200 km (for 
regional model) and from 5 to 50 km or even from 1 to 
5 km (for local model).1 

Second, current algorithms for objective analysis of 
meteorological fields mostly employ polynomial fitting2–8 
and optimal interpolation (for details, see Refs. 9 and 10) 
that suffer from a number of serious disadvantages. 
Algebraic polynomials in polynomial fitting, in particular,  

are arbitrarily chosen, irrelevant to the specific 
meteorological fields, and are inadequate for a coarse 
observational grid. Optimal interpolation (extrapolation) 
technique, on the other hand, calls for preliminary 
processing of a large body of initial information and 
calculation of the wanted statistical characteristics (from 
long–term data), including spatial correlation 
coefficients. 

Third, the objective analysis of altitude dependence 
of meteorological fields still underexploits nontraditional 
methods (such as the method of clustering of arguments11 
(MCA)) that are sufficiently efficient under conditions of 
informational uncertainty and need no preliminary 
generalization of long–term data. 

Under these circumstances, as well as due to the 
lack of literature on spatial extrapolation of 
mesometeorological fields, it seems reasonable to solve the 
problem by an integrated method based on optimal 
combination of alternative techniques of spatial prediction 
such as polynomial and optimal extrapolation techniques 
and MMCA. 

This paper discusses this approach with special 
emphasis on problem formulation, grounding in theory of 
its numerical solution, principles of implementation of an 
integrated algorithm, and finally the algorithm by itself 
for spatial prediction of vertical structure of 
meteorological fields. 

 
2. PROBLEM FORMULATION AND SOME 

GROUNDING  
IN THEORY OF ITS NUMERICAL SOLUTION BASED  

ON EXPERIMENTAL DATA 
 

Let an experiment output be a parameter f(ri) (a 

meteorological parameter, in our case) measured at points 
ri ∈ Wx ⊂ Rm (with ri being the radius–vector of a point, 

i = 1, 2, ..., n, and n being the number of points in a closed 
subspace Wx of the finite–dimensional Euclidian space Rm). 

Then the procedure of extrapolation (spatial prediction) of 
the parameter f to a point r

0
 ∈ Wx ⊂ Rm, that is, the 

determination of f(r
0
) outside the set Wx knowing f values 

at points ri , i = 1, ..., n belonging to Wx , is performed on 

the class of linear models according to the expression 
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f
∧

(r
0
) = ∑

i=1

n

 ai f(ri) , (1) 

 

where ai , i
 = 1, ..., n are some weighting factors that do 

not depend on f values at points ri , i = 1, ..., n and are to 

be adjusted so that the quality of predictions f
∧

(r
0
) be 

guaranteed by the confidence inequality  

 

E [f
∧

(r
0
) – f(r

0
)]2 ≤ ε i

2 . (2) 

 
Here, E(⋅) denotes the mathematical expectation operator 

that averages over all Δ = f
∧

(r
0
) – f(r

0
), and ε i

2 is the 

acceptable error estimated from the variance of 
observation errors and maximum permissible error in 
spatial prediction. 

For the problem just formulated, let us now briefly 
consider the theoretical grounding of its solution using 
one of the alternative techniques (polynomial fitting, 
optimal interpolation, and MCA) that, as mentioned 
above, were used in construction of the optimal 
integrated algorithm for meteorological field 
extrapolation. For complete detail, see Refs. 8–11. 

 
A. Polynomial fitting technique 

 
According to this technique, meteorological 

parameter f is estimated at a point (x
0
, y

0
) lying in a 

given plane (or isobaric surface), from measurements of f 
at the ith points (i = 1, ..., N) lying in the vicinity of 
the point of prediction. We assume that the f values can 
be represented by a polynomial (algebraic, as is normally 
the case) of some prescribed functions of coordinates 
Fk(x, y) in the form7

 
 

fi = f(xi, yi) = ∑
k=1

K

 ak Fk i  (i = 1, 2, ..., N) , (3) 

where Fki
 = Fk(xi, yi), while Fk(xi, yi) for algebraic 

polynomial have the form 
 
F

1
(xi, yi) = 1 ,  F

2
(xi, yi) = x ,  F

3
(xi, yi) = y , 

(4) 
F

4
(xi, yi) = x2 ,  F

5
(xi, yi) = x y ,  F

6
(xi, yi) = y2 , ... , 

 
ak are some weighting factors that are to be determined 

from N equations (3), and K is the number of coefficients 
ak in the given polynomial. 

It should be emphasized at once that observation 
errors can be accounted for only when the number of 
observations N is larger than K, the number of terms in 
the polynomial. As a consequence, Eq. (3) turns out to be 
approximate, and in practice the coefficients ak are 

calculated from Eq. (3) by the least squares technique (in 
full detail, this technique was described in Ref. 12), so 
that to minimize the sum of squared differences between 
the right– and left–hand sides 

 

E = ∑
i=1

N

 (
 

 
fi – ∑

k=1

K

 ak )
 

 
Fk i

2

. (5) 

 
This condition is satisfied only when all derivatives of E 
with respect to ak vanish, that is 

 

∂ E
∂ a

1
 = 0,  

∂ E
∂ a

2
 = 0, ..., 

∂ E
∂ ak

 = 0. (6) 

 
In the present paper, we extrapolate f values from 

measurements in points distributed nonuniformly in a 
plane that should be additionally accounted for, e.g., 
through introducing weights proportional to the distance 
to the prediction point. The minimum condition (5) then 
modifies to 
 

E′ = ∑
i=1

N

 Si(
 

 
fi – ∑

k=1

K

 )
 

 
Fk i

2

 , (7) 

 
where the factors Si are appropriately chosen as functions of 

the distance 

ri =
 

(xi – x
0
)2 + (yi – y

0
)2 . (8) 

 
In addition, to solve the above formulated problem, we 

require only f
0
 rather than fi . To estimate f

0
, the origin of 

coordinates is traditionally placed at the prediction point, 
i.e., x = y = 0. From Eq. (3) we then obtain 
 
fi(0, 0) = a

1
 , (9) 

 
that is, only the first coefficient of algebraic polynomial ak 

is of necessity. 
 

B. Optimal extrapolation technique 
 

Unlike the polynomial fitting technique, this technique 
is based on statistical analysis of meteorological fields; so 
some statistical nomenclature for meteorological fields is 
presented before proceeding to the technique. 

Let f be the value of a meteorological parameter at 

point i or j, f
–

 be its average (norm), and f ′ = f – 
–
f  be 

deviation from the average. In this case, the average of 

the square function D = f ′2  is called the variance of the 

meteorological parameter f; the average product of f  ′ 

values at points i and j, mij = f i′ f j′ , is called 

covariance, and being divided by the square root of the 
product of variances at these points, it yields the 
normalized autocorrelation function (or autocorrelation 
moment)  

μi j = 

f i′ fj′

f i′
2 f j′

2

 = 
mij

Di Dj

 . (10) 

 

As is well known, at short distances (of the order of a 
few hundreds of kilometers10) the field of any 
meteorological parameter f can be assumed isotropic and 
uniform, and its variances are then identical throughout the 
field, with Di = Dj = d2, while the autocorrelation function 

is dependent solely on the distance between points i and j 
and is expressed as 
 

μi j = μ(ri j) = f i′ f j′ /d2 . (11) 

 
In practice, since the autocorrelation function and the 

variance are calculated from measurements of meteorological  
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parameter (taken with an error δ), the empirical 
autocorrelation function μij is written as 

μi j

 

= 
1

N d2 ∑
k=1

N

 f
∧

ik′  f
∧

jk′  , (12) 

where d2

 

= 
1
N∑

k=1

N

 
∧

f′2k  – δ2 is the variance of meteorological 

parameter f, f
∧

ik′  and f
∧

jk′  are its deviations from the average 

at points i and j, and N is the number of cases used in 
statistical calculation. 

After the preliminaries having been completed, let us 
now proceed to the essence of the optimal extrapolation 
technique. According to this technique, the meteorological 
parameter f at the point (x

0
, y

0
) is determined from its 

measurements at points i, i = 1, ..., n, lying in the vicinity 
of the prediction point, by the relation10 

f
0
 = f

–
0
 + f′ = f

–
0
 + ∑

i=1

N

 pi f
∧

i′ , (13) 

where f
–

0
 is the average of the meteorological parameter, 

and f′
0
 is the deviation of f from the average; f

∧

i′ = f
∧

i – f
–

i is 

the deviation of the measured 
∧

fi from the norm f
–

i taken at 

the ith points; and pi is an interpolation weight to be 

adjusted so that to minimize the mean square error of 
extrapolation 

E = (f
∧

0
′  – f

0
′)2 =

⎣
⎡
 

 
f 

0
′2 – 2 f

0
′ ∑

i=1

n

 pi f
∧

i′ +
⎝
⎛
 

 
∑
i=1

n

 pi f
∧

i′ ⎠
⎞
 

 

2

⎦
⎤
 

 
. (14) 

 
As in the polynomial fitting, we use the minimum 

condition 
 

∂ E
∂ pi

 = 0  (i = 1, 2, ..., n) , (15) 

 

take the term–by–term derivative of Eq. (14), and 
introduce the relative error η = δ2/d2, which is the ratio of 
mean square error in measuring meteorological parameter to 
its variance and is a variability characteristic of f, we 
finally arrive at the set of equations 
 

∑
j=1

n

 pi μij + pi η =

 

μ
0i  (i = 1, 2, ..., n) (16) 

 

for determination of weights pi .
  

To calculate the coefficients pi from Eq. (16), we 

must know the autocorrelation moments μij and μ
0i . By 

virtue of the above assumption on uniform and isotropic 
field, the autocorrelation moment μij is dependent on the 

distance between points i and j as well as on their 
distance from the prediction point (x

0
, y

0
). 

In Cartesian coordinates of a geographic map, the 
said distances are expressed as 

 

rij = (xi – xj)
2 + (yi – yj)

2 . (17) 

 
In practice, different analytical expressions are used 

to evaluate the normalized autocorrelation functions for  

points i and j as functions of the distance r. For instance, 
the normalized autocorrelation function of the Earth's 
surface temperature derived in Ref. 13 has the analytical 
form 

 
μ(r) = exp(– 0.825 r0.92) , (18) 
 
and the same function for the wind velocity components 
found in Ref. 14 is written in the following form: 
 
μu(r) = μv(r) = (1 – 0.98 r) exp(– 0.98 r) . (19) 

 
Next, the evaluated μij values are inserted in the set 

of equations (16) to yield the weight pi . 

The obtained pi is inserted in Eq. (13) and, after the 

norm of 
–
f

0
 and 

∧

f'
0
 being found, the latter by subtracting 

the norms 
–
f i at all the ith points from the corresponding 

measured 
∧

fi values, we finally have the desired 

meteorological parameter f
0
 at the point (x

0
, y

0
). 

 
C. Method of clustering of arguments 

 
This method, in its modified form, is clearly 

advantageous over the polynomial and optimal 
extrapolation techniques considered above in its ability to 
extrapolate spatially not only fi values but also k–

dimensional vectors (vertical profiles) of this same 
meteorological parameter fi(κk), but now resolved into 

levels by either altitudes h = 0, 1, ..., hk or pressures 

p = p
0
, ..., pk . In conformity with Ref. 15, we assume 

that the vertical local and regional meteorological fields 
fi(hk) are uniform and can be described with a single 

covariation matrix. Under this condition, the spatial 
prediction (using MCA) of f

0
(hk) value at the point 

(x
0
, y

0
) from known (measured) fi(hk) values at the 

nearest ith point is made for the system of linear 
regression models of the form11 

 

Y
0
(h, N + 1) = ∑

t=1

N*

 A(h, τ) Yi(h, N + 1 – τ) + 

 

+ ∑
j=1

h–1

 B(h, j) Y
0
( j, N + 1) + ε(h, N + 1)  

 

(h = h
–

 + 1 , h
–

 + 2 , ..., hk) (20) 

 
based on the initial experimental data of spatiotemporal 
observations: 
 
{Yi(h, t) ,  h = 0, 1, ..., hk ;  t = 1, ..., N} ; (21) 
 

{Y
0
(h, t) ,  h = 0, 1, ..., h

–
 ≤ hk ;  t = N + 1} , (22) 

 
where h is the altitude; t is the time of observation; N* is 
the time delay (N* < [N – h – 1]/2); 
A(h, 1), ..., A(h, N) and B(h, 0), ..., B(h, h – 1) are the 
unknown model parameters; and ε(h, N + 1) is the 
discrepancy of the model. 

An algorithm for choosing the best prognostic model 
is discussed in section 4. 

 



V.S. Komarov and A.V. Kreminskii Vol. 8,  No. 7 /July  1995/ Atmos. Oceanic Opt.  491 
 

 

3. MAIN PRINCIPLES OF CONSTRUCTING AN 
INTEGRATED ALGORITHM FOR SPATIAL 

PREDICTION 
 

Let us now discuss general principles of constructing 
an integrated algorithm obtained by combination of the 
alternative prognostic methods and intended to 
reconstruct (spatially predict) vertical profiles of 
meteorological parameters (in our case, these are the air 
temperature (T

a
) and zonal (U) and meridional (V) wind 

velocities) at a point (x
0
, y

0
), using observation data 

from N closely located aerological stations (or remote 
sensing stations). In doing this we are guided by the 
following basic principles: 

1. Real–time spatial prediction should be preceded 
by preliminary estimation of the corresponding mean 
values both at the initial ith points and at the prediction 
point (x

0
, y

0
) with the use of any model (background) 

values. 
2. A prognostic model must be based on a limited 

volume of real–time information, with no long–term data 
available. 

3. Chosen algorithm must employ optimum (i.e., 
allowing best extrapolation) combination of alternative 
techniques of spatial prediction, with a proper allowance 
for vertical structure of meteorological fields determining 
the specific weather conditions of local areas. 

4. The construction of the integrated algorithm 
proceeds in too steps. First, we identify level (levels) k, 
among K levels used, for which the reconstruction error ε 
is minimum. That is done by means of either polynomial 
fitting or optimal extrapolation. And only then (after the 
meteorological parameter f

0
 has been reconstructed by 

polynomial fitting or optimal extrapolation for levels 
with minimum reconstruction error and at time of 
observation t = N + 1) the spatial prediction by itself is 
made, based on a statistical sample of spatiotemporal 
observations, fi(hk, t), t = 1, 2, ..., N (from Ref. 16, 

N = 7–15) by the MCA to complete the profile 
f
0
(hk, N + 1). 

All these ideas provided a basis for constructing 
flowchart and integrated algorithm for spatial prediction 
of altitude structure of mesometeorological fields as 
applied to the temperature and zonal and meridional wind 
velocity fields. 

 
4. FLOWCHART AND INTEGRATED ALGORITHM 

FOR SPATIAL PREDICTION OF VERTICAL 
STRUCTURE OF MESOMETEOROLOGICAL FIELDS 

 
To understand better the integrated algorithm for 

spatial prediction of vertical structure of mesometeorological 
fields, we will consider its individual steps. First we dwell 
on identifying the level (levels) with minimum prediction 
error (Fig. 1) by the polynomial fitting or optimal 
extrapolation. Steps here will be the following. 

1. Input of the number of stations, N
s
, and the number 

of altitudes, M, where measurements have been performed. 
2. Choice of a spatial prediction technique (between 

polynomial fitting and optimal extrapolation).  
When choosing the polynomial fitting, the temperature 

(T) and zonal (U) and meridional (V) wind velocity 
components are calculated for representation of their fields 
in the vicinity of the point by algebraic polynomial 

 

P
1
(x, y) = a

0
 + a

1 
x + a

2 
y , (23) 

 
where x and y are coordinates, and a

0
, ..., a

2
 are 

coefficients. Since the origin of coordinates is placed at the 
point under consideration, x = y = 0 and 
 
fi(0, 0) = a

0
 , (24) 

 

where fi is the sought–for value of T, U, or V. 

3. Input of T, U, and V values for the measurement 
points together with their coordinates (x, y) assuming that 
the wanted point is located at (0, 0), and setting up (by 
minimizing the sum of squared errors with respect to all 
coefficients a) the system of linear equations of the third 
order (SLE

3×3
) 

 

⎭
⎬
⎫a

0 
m

11
 + a

1 
m

21
 + a

2 
m

31
 = n

1

a
0 
m

12
 + a

1 
m

22
 + a

2 
m

32
 = n

2

a
0 
m

13
 + a

1 
m

23
 + a

2 
m

33
 = n

3

  , (25) 

used for determination of the coefficients a at the given 

point.  
4–6. Implementation of cycles for levels j ≤ M, 

profiles k ≤ P, and stations i ≤ N
s 
. 

7. Calculation of the coefficients in the left–hand side 
of Eq. (25) using the relations 
 

m
11

 = 1 ,  m
21

 = 
1
N

s
 ∑
i=1

N
s

 xi ,  m31
 = 

1
N

s
 ∑
i=1

N
s

 yi , 

m
22

 = 
1
N

s
 ∑
i=1

N
s

 xi xi ,  m32
 = 

1
N

s
 ∑
i=1

N
s

 xi yi ,  m33
 = 

1
N

s
 ∑
i=1

N
s

 yi yi , 

m
12

 = m
21

 ,  m
13

 = m
31

 ,  m
23

 = m
32

 . 
 

8. Calculation of the right–hand side of SLE
3×3

 using 

the formulas 

n
1
 = 

1
N

s
 ∑
i=1

N
s

 fi ,  n2
 = 

1
N

s
 ∑
i=1

N
s

 xi fi ,  n3
 = 

1
N

s
 ∑
i=1

N
s

 yi fi . 

 

9. Reduction of SLE
3×3

 to SLE
2×2 

, that is, the 

derivation of the linear system of equations of the form 
 

a
0 
M

1
 + a

1 
M

2
 + N

1
 ,

a
0 
M

3
 + a

1 
M

4
 + N

2
 , (26) 

 

and calculation of the left–hand–side coefficients of the 
SLE

2×2
 using the relations 

 

M
1
 = m

12
 – m

13
 m

32
 / m

33
 ,  M

2
 = m

22
 – m

23
 m

32
 / m

33
 , 

M
3
 = m

11
 – m

13
 m

31
 / m

33
 ,  M

4
 = m

21
 – m

23
 m

31
 / m

33
 . 

10. Calculation of the right–hand side of SLE
2×2

 using 

the relations 

N
1
 = n

2

 
– n

3
 m

32
 / m

33
 ,  N

2
 = n

1
 – m

31
 n

3
 / m

33
 . 

 

11. Evaluation of a
0
 from the expression 

 

a
0
 = (N

1
 – M

2
 N

2
 / M

4
) / (M

1
 – M

2
 M

3
 / M

4
) , (27) 

 

derived from SLE
2×2 

, and its subsequent insertion in 

Eq. (24) to obtain the desired T, U, and V. 
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FIG. 1. Flowchart of spatial prediction by polynomial and optimal extrapolation techniques. 
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12. Setting j = j + 1, go through the cycle for all 
levels adopted. 

13. Setting k = k + 1, go through the cycle for all 
profiles. 

14. Output of the desired values in a table format. 
15. Identification of levels and results of most accurate 

reconstruction.  
When choosing the optimal extrapolation, T, U, and 

V are determined by another flowchart (see Fig. 1): 
16. Input of arrays T, U, and V measured at points 

(x, y) together with their coordinates assuming the desired 
point to be at the origin of coordinates (0, 0). 

17. Data conversion and clustering of initial sample T, 
U, and V to calculate their averages. 

18. Calculation of averages 
–
T, 

–
U, and 

–
V at all the ith 

points. 
19–21. Implementation of cycles for profiles k ≤ p, 

levels of measuring T, U, and V  j ≤ M, and stations 
i ≤ N

s
. 

22. Calculation of the distances R from the initial 
point to the point of measuring T, U, and V by the formula 

 

R = X 2 + Y 2 . (28) 
 

23. Calculation of deviation of measured T, U, and V 
from their averages by the formula 

f ′= f ′
meas

 – f
–

 . (29) 

 
24. Calculation of the autocorrelation function by the 

analytical expressions 

μ(R) =
 
exp(– 0.825 r0.92) (30) 

 
for temperature and  
 
μu(R) = μv(R) = (1 – 0.98 R) exp(– 0.98

 
R) (31) 

for wind velocity. 
25. Calculation of the coefficients pi in the system of 

equations (16) by the Gauss method accomplished in two 
steps. 

First, we eliminate successively the unknowns from the 
equations with the help of relation 

 

pi =(
 

 
μ

0i – ∑
j=1

n

 pi μi j – )pi

 

 
η / μi j , (32) 

 
where μ

0i and μij are the autocorrelation functions, pi is the 

weight, and η is a so–called measure of measurement error. 
According to Eq. (32), each top–row element of the 

extended matrix of SLE must be divided by the diagonal 
element 

 
μi j = μi j / μi i . (33) 

 
Next, we substitute Eq. (32) into the other equations 

of the system thereby eliminating corresponding pi from 

each equation. The elements of extended matrix are 
transformed as 

 

μ
0i = μi j – μi i / μj j . (34) 

 
The above calculations result in SLE with top–triange 

matrix whose under–diagonal elements are equal to zero. 
Next step is to solve SLE by successive determination 

of the unknown coefficients pi from formula (16). 

26. Setting i = i + 1, implement a cycle for all 
stations. 

27. Calculation of the desired T, U, and V at the 

point (x
0
, y

0
) with the help of climatic average 

–
a

0 
(e.g., 

taken for regional model of altitude distribution of 
temperature and wind velocity components or obtained 
otherwise) by the formula 

 

a
0
 = a–

0
 + ∑

i=1

N
s

 pi ai . (35) 

 

28. Setting j = j + 1, implement a cycle for all levels. 
29. Setting k = k + 1, implement a cycle for all 

profiles. 
30. Output of the results (desired T, U, and V) in a 

table format. 
31. Identification of levels and results of the most 

correct reconstruction. 
 

 
FIG. 2. Flowchart of reconstruction of vertical profiles of 
the meteorological parameters by modified MCA. 

 
After the level (levels) with the least error in T, U, 

and V reconstruction has been identified, MMCA11 is 
invoked to complete all levels. The algorithm proceeds as 
follows (Fig. 2). 

1. Input of the arrays T, U, and V measured at the 
nearest (to the desired point) ith point (station), together 
with T, U, and V values reconstructed at the levels with 
the least ε by the optimal or polynomial extrapolation, 
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and clustering of the samples of spatiotemporal observations 
in the forms of Eqs. (21) and (22). 

2. Clustering of the initial sample given by Eq. (21) in 
subsamples n

1
 including observations made until t = N – 1 

and n
2
, including solely the observations at t = N (test 

sample). 
3. Learning block. From subsample n

1
 we select N* + h 

realistic models (20) against Akaike's criterion (FPE) 
 

FPE = 
(N – N* – 1) + s
(N – N* – 1) – s

 RSS(s) , (36) 

where  

RSS(s) = ∑
j=1

N–N*–1

   [Y h, N–j
(i)  – Y

∧

 h, N–j
(i) (s)]2 

 

is the residual sum of squares for the current model 
∧

Y 
(i)
h, N–j

(s) containing s nonzero estimates of the parameters 
 

Y
∧

 h, N–j
(i)  = X θ

∧

 ,  X ∈ M
(N–N*–1)(N*+h)

 ,  θ
∧

 ∈ RN*+h , 

where  

θ
∧

 = [A
∧

h, 1
 ... A

∧

h, N*
 B

∧

h, 0
 ... A

∧

h, h–1
] 

T (37) 
 

is the minimax estimate on the subsample n
1
 calculated by 

formulas given below, Rk is Euclidean space of k–
dimensional vectors, and Mm×p is the space of matrices of 

order m×p. 
4. Test block. From N* + h realistic models we select 

the only one (hereafter, the best model) with minimal 
prediction error on the test subsample n

2
 

 

⏐Y h, N
(i)  – Y

∧

 h, N
(i) (s)⏐ → min , 

 
where minimum is taken over all N* + h structures, each of 

which corresponds to its own model 
∧

Y 
(i)
h, N(s). 

Matrix of input variables (regressors) X*(s) ∈ M
(N–N*–1) s 

of the best structure has the form 
 

X*(s) =
⎣
⎢
⎡

⎦
⎥
⎤. . .

xp
1

: xp
2

: . . . : xps: : :
 , (38) 

 
where xp1

,
 
..., xps

 are the columns of the X matrix, 

 

X=

( ) ( )   . ( ) ( )
  . 0, -1, -2 , - *-1 -1, -1

Y ...Y  Y  ... Y  

.          .           . .          .

.          .           . .          .

.          .           . .          .

.          .           . .  

i i i i

Nh N h N N h N

( ) ( ) . ( ) ( )
. 0, *+1, * , 1 -1, *+1

        .

.          .           . .          .

.          .           . .          .

Y ...Y           Y  ...Y  
i i i i

Nh N h h N

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

, (39) 

 

and p
1
, ..., ps are the serial numbers of nonzero components 

of the vector–estimator. 

5. Adaptation block. The vector 
∧

θ ∈ Rs of the 
parameters of the best structure (37) is recalculated 
(adapted) on the entire sample n

1
 + n

2
 of initial data  

(21)–(22) according to the formulas of the algorithm of 
minimax estimation: 

 

θ* = γθ
∼
 ,  θ

∼
 = [X

∼
T X
∼
]–1 X

∼
T Z

~
 , (40) 

 
where the vector–estimator  
 

γ = Δh, N+1
2  / (Δh, N+1

2  + uh) ,  uh = x∼h
T [X

∼
T X
∼
]–1 x∼h σ

2 , (41) 

 
Δh, N + 1

 are maximum permissible values of the predictant  

Y 
0
n, N+1

, which are either calculated by the formula 

 

Δh, N+1
 = max

t=1, ..., N
 ⏐Y h, t

(i) ⏐  (h = 0, 1, ..., h*) (42) 

or specified by user, while the matrix X
∼
 of input variables 

and the vector of output variables Z
∼
 are defined as 

 

Z
∼
 = [z∼i] =

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤

Y h, N–1
(i)

.

.

.
Y h, N*+1

(i)

.

.

.
Y h, N

(i)

∈ RN–N* ,   

 

X
∼
 = [x∼i j] = 

⎣
⎢
⎡

⎦
⎥
⎤

X*(s)
.
.
.

x~h
T

∈ M
(N–N*) s , (43) 

 

x∼h = [x∼p
1
, x∼p

2
, ..., x∼ps

]T ∈ Rs , x∼pi
, ..., x∼ps

 are observations 

from the array 
 

⎣
⎢
⎡

⎦
⎥
⎤.

Y h, N–1
(i) Y h, N–2

(i) ... Y h, N–N*
(i) : Y 

0, N
(i) ... Y h–1, N

(i)

:
 (44) 

 
numbered by p

1
, ..., ps , respectively, 

 

σ2 = 
1

N – N* – s ∑
i=1

N–N*

 (
 

 
z∼i – ∑

j=1

s

 x∼ij )
 

 
θ
∼
j

2

. (45) 

 
6. Prediction block gives Y *0

h, N + 1
 value at the point 

(h, N + 1) 
 

Y 
0, N+1
*0  = x∼h

T
 
θ* (46) 

 
and the statistical estimate of the maximum prediction 
variance 
 
E [E(Y(Y h, N+1

0 ) – Y h, N+1
*0 ]2 ≤ δh, N+1

 ,   

 

δh, N+1

 
= uh Δh, N+1

2  / (uh + Δh, N+1
2 ) , (47) 

 
where uh is evaluated from Eq. (41). 

 
7. Output of the results of spatial prediction of the 

vertical profile Y
0
(h, N + 1) completing the vertical profile f. 
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Thus, the problem of spatial prediction of the vertical 
profiles of temperature and wind velocity components for 
regions uncovered with temperature and wind sensing data has 
been completely solved. Summarizing, it may be said that 
efficiency of the integrated method just described can be 
evaluated only from the results of numerical experiments 
based on the data of vertical sensing performed at different 
points of a mesometeorological polygon. This will be the 
subject of the second part of the paper published in this issue. 
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