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In the paper, an algorithm for reconstruction of the intensity distribution over 
the laser beam cross section from the temperature field of a thin target is described. 
The reasons for the solution instability and methods for their elimination are 
analyzed. The results of numerical reconstruction experiment are presented for 
various boundary conditions. 

 
When solving a number of atmospheric problems, it 

is necessary to know the continuously varying parameters 
of a laser beam propagating in the atmosphere. When 
studying the regularities of variations of these parameters, 
a problem arises of measuring the intensity in the beam 
cross section. One of the possible methods of intensity 
measurement is its reconstruction from the temperature 
field on the target surface. 

We published a number of papers1–3 where the 
integral relationships and algorithms were obtained that 
allow one to reconstruct the laser radiation intensity from 
measurements of temperature on the target surface for 
various boundary conditions and arbitrary target 
thickness. There are some singularities in these integral 
relationships, and to eliminate them we had to apply 
regularization of a certain type. A case of a thin target 
was of interest in a number of experiments because it 
favored the simplification of these relationships.1–3 

The relationships obtained in Ref. 1 by the 
imbedding method connect the target surface temperature 
T(ρ, t) with the intensity distribution I(ρ, t) of laser 
beam incident on a target in terms of the heat flux q(ρ, t) 
reconstructed from this temperature (neglecting the heat 
loss, q(ρ, t) = (1 – R)I(ρ, t), where R is the reflection 
coefficient). In the case of a thin target (generalized 
thermophysical Fourier parameter Fg = a2t/L2 > 1) with 

various boundary conditions, the following relationships 
were obtained: 

 

q(ρ, t) = 
k L
a2  [ ]∂

∂ t T(ρ, t) – a2 Δ⊥ T(ρ, t) , (1) 

 

q(ρ, t) = 
k
L T(ρ, t) + 

k L
3 a2 [ ]∂

∂ t T(ρ, t) – a2 Δ⊥ T(ρ, t) , (2) 

 
for thermal–insulating and cooled targets, respectively, 
where a2 and k are the thermal diffusivity and 
conductivity, respectively; L is the target thickness; 
ρ = {x, y} are the transverse coordinates; t is time; and, 
Δ⊥ = ∂/∂x2 + ∂/∂y2 is the transverse Laplacian operator. 

The aim of the paper is numerical reconstruction of 
the intensity by Eqs. (1) and (2) that are simpler in 
comparison with integral relationships derived in Refs. 1–
3 since they do not contain any singularities and are also 
subjected to the noise effects that are present in the 
initial data. 

Let us use the following difference procedure4 to 
realize numerically Eqs. (1) and (2). Let the target have 
the shape of a rectangular plate, and let us assume 
 

h = x0/N = y0/N, τ = tmax/M, xk = kh, ym = hm,  
 

tν = ντ, T k m
ν  = T(xk, ym, tν).  

 

Let us introduce operators 
 

Λ1 T k m
ν  = – (T k – 1 m

ν  – 2 T k m
ν  + T k + 1 m

m ) / h2, (3) 
 

Λ2

 
T k m

ν  = – (T k m – 1
ν  – 2 T k m

ν  + T k m + 1
ν ) / h2, (4) 

 

Λ T k m
ν  

= Λ1 T k m
ν  + Λ2 T k m

ν  , (5) 
 

where Λ is the discrete analog of the Laplacian operator. 
Using these designations, we can write the following 
difference analog of Eqs. (1) and (2) for thermal–
insulating and cooled targets, respectively: 
 

qk m
ν – 1 = k L/a2 [(T k m

ν  – T k + 1 m
ν – 1 ) / τ – a2 Λ1 T k m

ν – 1] , (6) 
 

qk m
ν – 1 = (k/L) T k + 1 m

ν – 1  + [k L/3 a2] × 
 

×
 
[(T k m

ν  – T k + 1 m
ν – 1 )/τ – a2 Λ1 T k m

ν – 1] , (7) 
 

where k, m = 1, 2, ..., N – 1; τ = 1, 2, ..., M. 
The intensity reconstruction for thermophysical 

situations (1) and (2) was simulated in the numerical 
experiment with the use of the above–described 
algorithm. Then it was supposed that the temperature 
distribution over the spatial coordinates T(ρ, t) was 
measured at some fixed moment with a random error 
 

T k m
ν  = T(ρk m, tν) + ζ k m

ν  , 
 

where ζ k m
ν  obeyed the normal distribution law with zero 

mean and variance σ2. The domain of the functions was 
given in the experiment as follows: t ∈ [0, 1];  
c, x, y ∈ [–1, 1]; N = 40. The frequency of thermal 
image recording was 1/24, which corresponds to the 
temporal resolution of a thermal imager. The target was 
made of aluminium. The following function was chosen as 
a model of the initial intensity: 
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q(ρ, t) = exp {– α(x2 + y2)} Θ(τ) f(τ) , (8) 
 

where Θ(τ) = {1, τ ≥ 0,
0, t < 0, t ≥ 1,  

 

and the form of f(τ) was 
 

f1(τ) = 2.6 I0 [ exp ((τ – 0.5)2 α2) – 0.8 exp ((τ – 0.5)2 α3)] (9) 
 

for thermal–insulated target and   

f2(τ) = I0 exp 
⎩
⎨⎧

⎭
⎬⎫ – 

(τ – 0.5)2

(0.5)2 – (τ – 0.5)2  (10) 

 

for the cooled one, I0 = 1 W/cm2, τ = t/t0, t0 = 1 s. It was 

chosen for both models α = 4 ln(10), α2 = 20, and α3 = 60. 

The dependence (8) is shown in Figs. 1a and 2a at two 
different moments t8 = 0.3 and t16 = 0.6, respectively (from 

all totality of temporal samples). The results of reconstruction 
for σ = 0.02 are shown in Figs. 1b and 2b. 
 

Let us comment upon the results obtained. The plots 
are indicative of instability of the difference scheme in this 
statement. The error in calculating the lth temperature 
derivative (l = 1, 2) consists of two components 
 

δ = δR + δr, 
 

where δR ∼ h p is the error in approximating the function in 

the vicinity of the expansion point (p is the order of 
accuracy), δr ∼ 1/hl is the inherent random error connected 

with the error in measuring (l is the order of 
differentiation). 

The Tikhonov regularization methods4 are applied to the 
problems of this class, as well as the smoothing spline 
methods5,6; however, these methods become more cumbersome 
when solving three–dimensional problem. The choice of one or 
another calculation procedure is determined by the required 
accuracy. So for the experimental data processing it is 
preferable to use simpler methods that ensure satisfactory 
accuracy for further processing. 

 

 
FIG. 1. Reconstruction of the heat flux (W/cm2) by Eqs. (8) and (9) for a thermal–insulated target: a) initial model 
distribution, b) reconstructed heat flux, c) smoothed solution. The normalized values of the corresponding quantities are 
plotted on the axes. 
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FIG. 2. Reconstruction of the heat flux (W/cm2) by Eqs. (8) and (10) for a cooled target: a) initial model distribution, 
b) reconstructed heat flux, c) smoothed solution. 

 
The characteristic dependence of the error in the solution 

on the step size is shown in Fig. 3. The actual inherent error 
depends irregularly on the step size and randomly oscillates 
(see the dashed line in Fig. 3) within the limits determined by 
the majorant (the solid line). It is seen from the plot that 
regularization is efficient when the sampling step size 
increases, but in this case the resolution of algorithm decreases 
(the quality of reconstruction of fine structures deteriorates). 
So let us keep constant the sampling step size and decrease the 
effect of random errors δr. To do this, we must perform 

filtration of initial data. A simple and effective filter that 
ensures satisfactory accuracy is the convolution of initial data 
with a certain stabilizing function.7,8 

We have chosen sinc(x) as a stabilizing multiplier. It 
is a function of the following form: 
 

sinc(x) = sin (κmax x)/π x . (11) 

 
This multiplier imposes limitation on the spectral 

width and cuts off all unnecessary high–frequency noise 
components. The parameter κmax in Eq. (11) is the cutoff 

 

spatial frequency chosen according to the Kotel'nikov 
sampling theorem7,9 
 

h = π/κmax . 
 

Assuming that the spatial resolution of the algorithm 
is limited by instrumental resolution, we find the parameter 
κmax. Obviously, it is determined by the inequality 
 

π/2 h < κmax < π/h . 
 

In our case, h = 0.05 and κmax ≈ 30. The convolution 

and differentiation operators commute due to their linearity, 
so one can realize the smoothing procedure at the last stage 
of the algorithm. The result of convolution of the solution 
obtained with function (11) is shown in Figs. 1c and 2c. 
The maximum reconstruction error does not exceed 10%. In 
our opinion, these results are satisfactory. The presence of 
artefacts on the edges of the reconstructed flux is caused by 
the finite transverse target size and can be eliminated by 
way of increasing the target size. 
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FIG. 3. Solution error as a function of the step size: δR is 

the error in approximation of the function; δr is the 

estimated majorant of the inherent random error 
connected with the error in measuring the function; 
dashed curve is for the inherent error randomly oscillating 
within the limits determined by the majorant. 
 

In this paper, we have described the algorithm for 
reconstruction of the intensity from the temperature field of a  
 

thin target and have analyzed the reasons for the solution 
instability and the methods of their elimination. This 
algorithm is part of the software complex for experimental 
data processing, i.e., the laser beam intensity reconstruction 
from the temperature field of the heated surface of a target 
with arbitrary parameters. 
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