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Within the context of a problem of monitoring of the Earth's underlying surface 
and cloudiness, new estimating Bayes decision rules for pattern recognition and 
automated classification were synthesized to extract complete information from a set 
of satellite video images as well as cartographic information and results of contact 
measurements under conditions of a priori indeterminacy. The rules take into account 
high dimensionality of miscellaneous observations, meager tutorial sequences, and 
degeneracy of support functions of approximating distributions. 

 
In order to assess the state of the Earth's underlying 

surface and cloudiness, one should process a large quantity 
of satellite multidimensional data recorded in tens of 
spectral channels of visible (V), infrared (IR), and 
superhigh–frequency (SHF) ranges of electromagnetic 
radiation taking into account results of subsatellite contact 
measurements and landscape subject–oriented mapping. The 
necessity of taking into account the temporal characteristics 
and spatial texture of video images for solving the problems 
of exploration of natural resources and ecological 
monitoring increases the dimensionality of observations to 
be analyzed. The development of techniques for fusion of 
miscellaneous images and the advent of satellite means of 
periodical observation of the Earth's surface and cloudiness 
open the prospects for joint analysis of miscellaneous data 
obtained at different times. Traditional approach to image 
analysis is oriented at processing of such individual 
components as a set of V, IR, or radar (R) images with 
subsequent aggregation of component solutions. This leads 
to irretrievable loss of information on inter–component 
connections. 

The problem arises of the complete extraction of the 
information from multicomponent miscellaneous data of 
essentially high dimensionality. 

Among the algorithms of preliminary video image 
processing, the main role is assigned to the pattern 
recognition algorithms with "instruction" on test image 
fragments and to the algorithms of automated 
classification when tutorial samples are lacking. These 
algorithms make it possible to analyze the geometry of 
multidimensional sample spaces and to solve effectively 
the problem of aggregation, objective segmentation, and 
identification of the data. 

Taking into account the stochastic character of 
recorded fields, to create the algorithms for the pattern 
recognition and automated classification, it is natural to 
apply the statistical theory of hypothesis testing and 
parameter estimation based on the conditional probability 
distribution of recognizable situations that, as a rule, are 
unknown. 

In the last few years, the theory is successfully 
developed of nonparametric estimation of the unknown 
distribution from data samples, but the questions of the 
choice of a kernel for these estimates and, what is more 
essential, of the smoothing parameters are still open 
questions. 

Let us define the structure of the observed miscellaneous 
data and introduce the term of the observation element, 
namely, the aggregate of data. Let us suppose that all the 
recorded image components of V, IR, and SHF ranges, 
accompanying cartographic data, and the data of contact 
measurements have been digitized, scaled, and normalized so 
that a choice of a fragment of mx×my pixels of the brightness 

characteristics, for example, of visible spectral range as an 
observational element to consider the texture characteristics 
allows us to generate a series of corresponding fragments in all 
the spectral channels of V, IR, and SHF ranges, and to 
complete it by the fragments of cartographic data and the 
vector of contact measurements. In particular, the hexagonal 
fragment of the spatial information medium connected with 
cartographic basis can be selected depending on the problem to 
be solved. 

Depending on a specific problem, so–formatted 
aggregate of observational data can be expressed in the form 
of the following structure with multi–indices:  

 

z(u)=

⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

{ }xijk mi×mj×mk,
 i=1,...,mi, j=1, ...,mj, k=1,..., mk,

{ }yuν  m
μ
×m

ν
, μ=1, ..., m

μ
, ν=1, ..., m

ν
,

{ }νl ml, l=1, ..., ml,

, 

 

where {xijk} are the digitized brightness components of V, 
IR, and SHF ranges with the values of mi×mj square of 

pixels that constitute the reference fragment of video 

images; mk is the number of individual images; {yuν} are the 

digitized cartographic data with the values of m
μ
×m

ν
 square 

of pixels; and, {νl} is the ml–dimensional vector of 

subsatellite observations. 
If we designate the generalized dimensionality of the 

aggregate of data by n, where n = mi×mj×mk + m
μ
×m

ν
 + ml, 

then z(u), where u is a series of multi–indices that may 
sometimes be omitted, is the element of the n-dimensional 
Euclidean space z(u) ∈ En. Although, from theoretical 
standpoint, the space of multidimensional matrix structures 
of data is isomorphic with the space of vectors whose 
components are composed of all the components of the 
matrix data, nevertheless, we will not vector the aggregates 
z(u) because vector representation destroys the natural data 
structure. In this connection, it is necessary to determine 
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the scalar (inner) and direct (outer) products of the 

elements z(u) and z′(u) ∈ En. For compactness, vector 
notation of operations and corresponding terms explained in 
Appendix will be used. 

Let us consider the problem of formulation of the 
decision rule of the pattern recognition in the statistical 
statement, when tutorial sequences of aggregates obtained 
from test fragments of video images and supplemented by 
accompanying data of contact measurements have been 
given. 

Let the probability measures with a priori distribution 
of situations P(λ) and conditional probability density 
functions f

λ
(z( )) of the aggregates of observational data 

Z( )∈ En be in the n-dimensional Euclidean space En of the 

aggregates of data z( ) ∈ En and the image space 
Λ = {1, ..., L} of L patterns (classes), where n is the 
generalized dimensionality of data. Let us determine the 
simple matrix of losses due to accepted decisions (1 – δ

λμ
), 

where δ
λμ

 is the Kronecker symbol. 

As is known,1 the Bayes decision rule optimal in the 
sense of mean loss minimum has the following form: 
 
r(z( )) = arg max

λ ∈ Λ

 P(λ) f
λ
(z( )), r, λ ∈ Λ, (1) 

 
where the decision r( ) also belongs to the class space Λ. 
The conditional density functions f

λ
( ) are unknown for real 

problems, but there are the tutorial sequences of data 

samples classified by the "tutor" zλ
1
( ), ..., z`λNλ

( ), where N
λ
 

is the size of a sample belonging to the class λ ∈ Λ. To 

retrieve the unknown distributions in En it is natural to use 
their nonparametric estimates, for example, in the metric 
with the Gauss kernel2: 
 

f
∧

λ
(z( )) = 

N–1
λ

 h–n
λ

( 2π)n ⏐G
∧

λ
⏐1/2

 × 

× ∑
j=1

N
λ

 exp 
⎩
⎨
⎧

⎭
⎬
⎫– 

1

2 h2
λ

 (z( ) – zλ
j( ))

T G
∧

–1
λ

 (z( ) – zλ
j( )) , (2) 

 

where 
∧

G
λ
 is the correlation matrix estimated from the 

tutorial sample of the class, T is the transposition symbol, 
h

λ
 is the smoothing parameter, N

λ
 is the size of tutorial 

sample, λ ∈ Λ. Taking into account the degeneracy of the 

inverse correlation matrix 
∧

G–1
λ

 due to insufficient statistic of 

tutorial data samples for n ≥ N
λ
, let us consider some 

questions of correct calculation of f
∧

λ
(z( )) using the results 

from Appendix. 
To this end, we represent the quadratic form of the 

Gauss kernel in Eq. (2) as follows [see Eq. (A6)]: 
 

Qj = (z( ) – zj( ))
T 

∧

G–1 (z( ) – zj( )) = (z°(u) – z°j(u))T × 
 

× ∑
i=1

k

 
1

σ2
i

 Φi(u) Φi
T(v) (z°(v) – z°j(v)) + (z°(u) – z°j(u))T × 

 

× ∑
i=k+1

n

  
1

σ2 Φi(u) Φ i
T(v) (z°(v) – z°j(v)), 

 

where the aggregates are centered around the estimate of 
mathematical expectation of corresponding class,  

°z = z( ) – 
∧

μ( ), σ2
i = λi, {Φi( }1

k is the dominant part [see 

Eq. (A6)] and {Φi( )}
n
k+1

 is the additive part of the 

Karhunen–Loeve basis, σ is the regularization parameter 
invariable in all additive basis due to the lack of 
information for its concrete definition. 

Let us transform the quadratic form Qj taking into 

account the following remarks. First, since the dominant 
part of the basis {Φi( )}

k
1
 was sampled from the class, we can 

represent the centered values of the tutorial sample in the 
basis of their proper class to a high accuracy. In this 
connection, the coefficients of representation of these 
sampled values in the additive basis {Φi( )}

n
k+1

 are close to 

zero, and we can ignore them. We then obtain 
 

Qj = ∑
i=1

k

 
(yi – xi

j)
2

σ2
i

 + ∑
i=k+1

n

 
(yi)2

σ2  , 

 

where yi and xi
j are the coefficients of representation of the 

centered observations °z( ) and °zj( ) in the bases {Φi( )}
k
1
 and 

{Φi( )}
n
k+1

 [see Eq. (A3)]. It is easy to see that ∑
i = k+1

n
 
 (y

i)2 is 

the error in approximation of the observed realization z( ), 
preliminary centered about the mathematical expectation of 

the class 
∧

μ( ) in the basis of the same class, i.e., 
 

∑
i=k+1

n

  (yi)2 = >z°(u) – ∑
i=1

k

 yi Φi(u)>2 = E2
k (z

°( )). 

 

Thus, the modified estimate of the unknown density 
function has the form:

 
 

f
∼

λ
(z( )) = 

1

( 2π)
n–k

λ
 

1

σ
λ

n–k
λ
 exp 

⎩
⎨
⎧

⎭
⎬
⎫– 

1

2 σ
λ
2 E

2
k

λ
 (z°( ))  × 

 

× 
N–1

λ

( 2π)
k

λ
 

h–
k

λ
λ

⎝
⎜
⎛

⎠
⎟
⎞

Π

k
λ

i=1

 σ
λi

 ∑
j=1

N
λ

 exp 
⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

– 
1

2 h2
λ

 ∑
i=1

k
λ

 
(yi – xi

j)
2

σ2
λi

 (3) 

 

and the following geometric interpretation: in the data 
sample space we have a standard nonparametric density 
estimate in the space of the spectral parameters of the 
Karhunen–Loeve basis (the second component in Eq. (3)). 
Due to deficient information, the first component in Eq. (3) 
is the Gauss density function describing the distribution of 
the error in representing the arbitrary observation in the 
basis of the class. Let us characterize the quality of decision 
rule (1) with modified estimates of the density functions 
given by Eq. (3) by the empirical risk7, namely 
 

R
∧

 = ∑
λ ∈ Λ

 
1

N
λ

 ∑
j=1

N
λ

 P(λ) I {λ = arg max
μ ∈ Λ

 P(μ) f
∼

μ
(zλ

j( ))}, (4) 

 

where I{truth} = 0, and I{falsehood} = 1 is the indicator 
function of false decisions. The empirical risk is calculated 
by the slide control technique to save the sample values. 

Namely, when calculating 
∼
f

μ=λ
(zλ

j( )) at the point zλ
j( ) for 

λ = μ in Eq. (4), this point is excluded from the data 

sample zλ
1
( ), ..., zλ

j–1
, zλ

j+1
( ), ..., zλ

Nk
( ) used to estimate the 

function 
∼
f

μ=λ
( ) (see Ref. 3). 
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It should be noted that each density function estimate  
∼

f
λ
( ) has two subdefinite parameters h

λ
 and σ

λ
, λ ∈ Λ. It is 

natural to select such parameters h
λ
 and σ

λ
, λ ∈ Λ that 

minimize the risk function R
∧

 given by Eq. (4). Taking into 

account that R
∧

 has many extrema and is not differentiable, 
to solve the minimization problem we have modified the 
search methods of optimization5 that combine random search 
with local steepest descent. 

In this case, it i necessary to know the range of 
variation of the adjustable parameters. We can estimate the 
approximate extreme values of the parameters from the 
condition of maximum of the empirical likelihood 
functional,6 then 
 

⎣
⎢
⎡

⎦
⎥
⎤

∑
i=1

N
λ

 
 min
{i}j]i

∑
l=1

k
λ

 
 
(xl

i–xl
j)

2

σ2
λlNλ

k
λ

1/2

< h
λ
<
⎣
⎢
⎡

⎦
⎥
⎤

∑
i=1

N
λ

 
 max

{i}

 ∑
l=1

k
λ

 
 
(xl

i–xl
j)

2

σ2
λlNλ

k
λ

1/2

,  

  (5) 

σ
λ
 ≅ 
⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤

∑
j=1

M
λ

 
 E 2

k
λ
(z°j( ))

(n – k
λ
) M

λ

1/2

 , 

 

where °zλ
1
( ),...,°zλ

Mλ
( ) is the tutorial sample of all classes of 

the size M
λ
 = ∑

i=1,i≠λ

Λ

 Ni, when the class λ is removed from it. 

The sample is centered around mathematical expectation of 
the class λ, and the error ε2

kλ
( ) is calculated in the basis of 

the class λ ∈ Λ. 
Once the parameters h

λ
 and σ

λ
, λ ∈ Λ, minimizing the 

empirical risk, have been determined, decision rule (1) can 
be used for an analysis of aggregates of data that are not 
included in instruction of the algorithm. 

Let us now suppose that tutorial samples are lacking, 
but there is a mixed sample, and the problem is to identify 
a few compact groups of data samples, called clusters or 
taxons, studying the geometry of data arrangement in the 
mixed sample. The classes of compactness or more exactly, 
sample values composing these classes, can serve as tutorial 
samples to formulate estimating Bayes decision rules (1). 

Let us take a statistical model describing the situation. 
Suppose we have a nonclassified sample of the aggregates of 
observations z

1
( ), ..., zN( ), where N is the sample size, 

z( ) ∈ En, at our disposal. 
We suppose that the random aggregate Z( ) has the 

function of the probability density of the form: 
 

f(z( )) = ∑
λŒ{1,...,L}

  P(λ) f
λ
(z( )), (6) 

 

where L is the number of clusters, f
λ
(z( )) is the conditional 

unimodular density function of the cluster λ, P(λ) is the 
weight of the density function f

λ
( ) in the mixture that means 

the a priori probability of occurrence of the cluster λ,  

∑
λŒ{1,...,L}

 P(λ) = 1, and the quantities included into Eq. (6) are 

unknown. 
The problem is to reconstruct the components 

{L, P(λ), f
λ
( ), λ ∈ {1, ..., L}} of mixture (6) from the 

available nonclassified sample z
1
( ), ..., zN( ) of size N of 

the observed aggregates z( ). It should be noted that the  

problem of reconstruction of the components of mixture (6) 
is solvable only when it is identifiable.7 It is difficult to 
check this condition in practice, and from the geometric 
standpoint it means that f(z( )) should have well 
pronounced local modes engendered by cluster–induced 
subsamples of mixed sample. In addition, to simplify the 
problem we suppose that the size of these cluster–induced 
subsamples are approximately proportional to P(λ), and

 
 

P(λ) ≅ N
λ
/N , λ ∈ {1, ..., L} . 

Solving the problem of reconstruction of the mixture 
in the correct statement is connected with a search for the 
maximum of the likelihood functional by varying the 
unknown parameters taking into account the chosen 
parameterization f

λ
( ) and is too cumbersome for 

calculations. So heuristic approaches to approximate 
solution of this problem on the basis of analysis of the 
sample aggregate geometry in the space of the mixed sample 
are justified. 

The hierarchical procedure of cluster identification is 
constructed as follows: the "distance" function is defined in 
the space of observations, and the distances between all 
possible parameters of the data sample z

1
( ), ..., zN( ) are 

analyzed. At the first step, the pairs of elements that are 
closest to each other in the sense of selected distance8 are 
clustered. The result of the first step is identification of the 
cluster centers of the aggregates. At the second and 
subsequent steps, all distances between clusters identified at 
the first step are analyzed, with the distance between 
clusters being defined as a distance between one cluster and 
each point of another cluster, the nearest point of the 
second cluster is selected, the nearest clusters are pooled, 
then clusters are pooled again, and their number decreases. 

Clusters are pooled until their necessary number or the 
number close to expected one is obtained or all the points of 
the mixed sample are pooled into one taxon. 

Let z
1
λ( ), ..., zMλ

λ ( ) be the subsample of the size M
λ
 

from the mixed sample z
1
( ), ..., zN( ) identified as the 

cluster λ at some iteration step. We define the probability 
that the examined observation z( ) belongs to the aggregate 

z
1
λ( ), ..., zMλ

λ ( ) identified as a cluster of observations as a 

nonparametric estimate of the density function at the point z() 
 

ρ(z( ); z
1
λ( ), ..., zMλ

λ ( )) = 
1
N ∑

j=1

Mλ

 
  

⏐G
∧

⏐–1/2 h
–n

λ

( 2π)
n  × 

 

× exp 

⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

– 
1

2 h
2

λ

 (z( )
 
–

 
zλ
j( ))

T G
∧

–1 (z( ) – zλ
j( ))  , (7) 

 

where h
λ
 is the smoothing parameter varying during the 

iteration process from h
min

 to h
max

; 
∧

G and 
∧

G–1 are the 

estimates of correlation and inverse correlation matrices 

calculated from the sample °z
1
λ( ), ..., °zMλ

λ ( ) of the size M
λ
 

taking into account the stability of calculation. We note that 
at the first steps of the iteration procedure when the size M

λ
 

of the data sample of the cluster is small, to estimate 
∧

G and  
∧

G–1, we should use the entire mixed sample. Once all 
distances ρ

λ
(z( )) have been calculated, where λ ∈ {1,...}, the 

element z( ) is added to the set {zj
λ}

1

M
λ for which the distance 

ρ
λ
( ) is maximum, in other words, by the Bayes rule given by 

Eq. (1) with estimates 
∼
P(l) and 

∼
f

λ
(z( )) given by Eq. (7). 
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To measure distances in the sense of Eq. (7), the 
smoothing parameter is varied within some limits or is set as 
follows6: 

 

h = ⎣
⎢
⎡

⎦
⎥
⎤∑

i=1

N

  ∑
j≠i

N

 (zi( ) – zj( ))
TG

∧

–1(zi( ) – zi( ))

N(N – 1) n

1/2

. (8) 

 
Thus, if the mixture (6) is identifiable and the local 

extrema, i.e., the modes of the cumulative density function, 
are quite "well pronounced", the clusters of the data sample 
identified during the above–described iteration process 
reconstruct the unimodular components of the mixture 
observed.9 

 
APPENDIX 

 

Using the agreement on the vector–functional form of 
writing the aggregates z( ) = z(u) and w( ) = w(u), we 
define their inner or scalar product as follows: 

 

zT( ) w( ) = (z( ), w( )) = ∑
{u}

 z(u) w(u), 

where the product are formed by the multipliers that are the 
corresponding components of the aggregates z(u) and w(u), 
and the summation is made over all pairs of identical 
multi–indices. 

We define the outer or direct product of the aggregates 
z( ) and w( ) as follows: 

 

z(u) wT(v) = z(u) ⊗ w(v), 
 

then the new structure object with dimensionality n×n 
appears. This structure consists of the elements formed by 
products of all possible component pairs from z(u) and 
w(u), and each element of this structure is labeled by 
complex index consisting of the components of u and v, 
respectively. 

Now we take advantage of the technique for 
constructing the Karhunen–Loeve basis from the data 
samples3 when observations are the aggregates of 
miscellaneous data z( ). We suppose that the data sample 
z
1
( ), ..., zN( ), where z ∈ En, of size N being the result of 

N observations of the random aggregate Z( ), is at our 
disposal. Let us suppose that the sample is centered around 
the selected mathematical expectation. 

Let us represent the observed aggregate as follows: 
 

Z( ) ≅ ∑
i=1

k

 X i Φi( ), (A.1) 

 

where the random coefficients {Xi}k
1
 and the nonrandom 

basis of orthonormal functions–aggregates {Φi( )}
k
1
 are 

determined from the conditions of minimization of the 
average square criterion of the approximation quality of the 
random aggregate Z( ) in this basis 
 

E2
k = M � Z( ) –∑

i=1

k

 XiΦi( ) �2=min({Xi}k
1
, {Φi( )

k
1
}), (A.2) 

 

where M is the symbol of the mathematical expectation 

operator, � . � is the Euclidean norm in the aggregate space En. 

Coefficients {X i}k
1
 of Eq. (1) minimizing (A.2) on the 

fixed basis {Φi( )}
k
1
 have the following form: 

X 
i = (Z( ), Φi( )) = ∑

{u}

 Z(u) Φi(u), i = 1, ... , k, (A.3) 

 

where (,) is the symbol of the above introduced scalar 
product. Solving the above–indicated variational problem 
given by Eq. (A.2) for the conditional (in the sense of 
constraints of orthonormality of the basis elements {Φi( )}

k
1
 

imposed upon functional (A.2) via the Lagrange multipliers) 
extremum leads to a homogeneous Fredholm integral 
equation of the second kind 
 

(M[Z(u) ZT(v)], Φ(v)) = λ Φ(u), (A.4) 
 

where λ is the Langrange multiplier, and the indices of basis 
elements Φ( ) and λ are omitted because of the equivalence 
of all equations. 

If we use the estimate of the correlation function from 
a sample of the centered aggregates z

1
( ), ..., zN( ) 

 

M[Z(u) ZT(v)] ≅ 
1
N ∑

j=1

N

 zj(u) ⊗ z(v), (A.5) 

 

then the problem of finding the basis functions from 
Eq. (A.4) becomes essentially simpler and reduces to solving 
the general problem of the eigenvalues of the positively 
determined Gram matrix3 of order N. As a result, we can 
determine the Karhunen–Loeve basis {Φi( )}

k
1
 and the 

spectrum of the eigenvalues {λi}
k
1
, k ≤ N, where k is the 

serial number of the last "stable" eigenvalue of the spectral 
components placed in decreasing order λ

1
≥...≥λk≥...≥λN. 

Using only stable eigenvalues and Mercer theorem,4 
we can estimate the inverse correlation function as follows:

 
 

 

{M[Z(u) ZT(v)]}–1 =~ ∑
i=1

k

 
1
λi

 Φi(u) ΦT
i(v), (A. 6) 

 

that is used in the Gauss metric for constructing the 
nonparametric estimates of the density function. 
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