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Numerical realization is presented of the perturbation method of the Mie scatterer 

shape for arbitrary oriented perturbed sphere. The conversion is performed from the basis of 

vector spherical harmonics with real dependence on azimuth angle ϕ , conventional in the 

light scattering theory, to the basis with complex dependence on the angle ϕ . The 

convergence of the method is examined for different number of corrections to be considered. 

The scattering phase matrix elements are calculated for elongated and inverted spheroids. 

 
1. INTRODUCTION 

 

Possible practical applications of modern achievements of 
the theory of light scattering by nonspherical particles are far 
behind the requirements of applied science including 
atmospheric aerosol optics. An attempt to generalize the Mie 
theory for arbitrary shaped particles was undertaken in Ref. 1, 
where only the first-order approximation in the perturbation 

parameter was considered. Then Erma2$4 derived the recursion 
formulas for the corrections to the Mie coefficients of any 
order and presented the final formulas only for fixed 
orientation of a scatterer. 

Unfortunately, in the aforementioned papers the 
universal technique for numerical calculations of arbitrarily 
perturbed spherical scatterer, depending not only on the polar 
angle θ, but also on the azimuth angle ϕ is lacking. The 
calculation formulas presented in this paper eliminate this 
disadvantage due to conversion from the basis of two linearly 
polarized states (LP$representation) to the basis of clockwise 
and counterclockwise polarized states (CP$representation). As 
a result, electromagnetic fields are expanded into series in 
terms of the vector spherical harmonics according to the 

angular momentum quantum theory.5 Calculations performed 
for a sphere with r = a perturbed to a sphere with r = a(1 + ε) 
show that in order to obtain reasonable accuracy of estimation 
of the light scattering parameters, it is necessary to consider 
the corrections of rather high order. 

At the same time the development of the method of 
perturbation of the Mie scatterer shape (PMSS) is promising 
due to a number of its advantages over the other 
nonperturbation methods. In particular, the well$known 

Barber-Yeh method6 proceeds from the equivalent statement of 
the problem of light scattering by arbitrarily shaped particle 
in the form of the vector integral equation. The problem is 
reduced to solving the infinite system of linear algebraic 
equations with infinite number of variables. The coefficients of 
equations are the integrals of the spherical functions with 
weights varying over the complex surface of a scatterer that 
are difficult for calculating. Integration in the PMSS method 
is made analytically over the full solid angle, i.e., over the 
unit sphere, with four integrals for each next correction. The 
only disadvantage of the PMSS method is its applicability 
only for moderately nonspherical particles; however, it offers 

advantage over the Asano$Yamamoto method,7 which can be 
used only for spheroids. 

The facts that the majority of natural light scattering 
particles are rather compact formations with low degree of 
nonsphericity and that the modern possibilities of optical 
measurements are such that their interpretation in the context 
of the Mie theory is not sufficiently advanced are decisive 
arguments in support of the further development of the PMSS 
method. It seems unexpedient and excessive to us to apply a 
method more cumbersome than PMSS for moderately 
nonspherical particles because it adds complexity to the Mie 
theory. 

 
2. CALCULATIONAL TECHNIQUE 

 

In this paper we consider scatterers whose surface is a 
sphere perturbed by the small parameter ε in the form of 
expression 

 

r = a(1 + ε f(θ, ϕ, θ
0
, ϕ

0
, ψ

0
)) , (1) 

 

where a is the radius of a nonperturbed sphere; 
f(θ, ϕ, θ

0
, ϕ

0
, ψ

0
) is the function that determines the shape 

and orientation of perturbation; θ
0
, ϕ

0
, and ψ

0
 are the Euler 

angles; and, r, θ, and ϕ are the spherical coordinates. It 
should be noted that Eq. (1) compares favourably with the 

Erma representation of the scatterer shape.4 It considers any 
orientation of particles in relation to the incident radiation. 

Analytical realization of the PMSS method supposes, as 
the Mie theory, a solution of the boundary problem of finding 

the complex vector field Es in the region external to the closed 
surface S that would satisfy the Helmholtz vector equation 
 

∇ × (∇ × E) = k2
1
E , (2) 

 

and the vector field E2 in the internal region that would 
satisfy the equation 
 

∇ × (∇ × E) = k2
2
E , (3) 

 

with the boundary conditions 
 

(Ei + Es $ E2) × N = 0, (4) 
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(Hi + Hs $ H2) × N = 0, (5) 
 

for the complex vector field Ei in the external region specified 
on the surface S, where N is the normal to S, 
 

N = r
s
 / a q( r $ r

s
)

r = rs
 = (1 + f ε) e

r
 $ α , α = ∇

Ω
 f. (6) 

 

Magnetic vector fields are expressed through the electric 
ones as follows: 
 

Hi = k
1
 ∇ × Ei / i ω μ

1
 , (7) 

Hs = k
1
 ∇ × Es / i ω μ

1
 , (8) 

H2 = k
2
 ∇ × E2 / i ω μ

2
 . (9) 

 

In addition to the complex amplitudes of the incident 

field Ei and Hi with cyclic frequency ω, wave numbers k
1
 and 

k
2
, and magnetic permeability μ

1
 in surrounding medium and 

μ
2
 inside a scatterer, the following parameters are used in this 

problem: 
 

χ
1
 = k

1
 / i ω μ

1
 , χ

2
 = k

2
 / i ω μ

2
 , k = k

1
 / k

2
 , χ = χ

1
 / χ

2
 , 

ρ
10

 = k
1
 a,  ρ

20
 = k

2
 a,  ρ

1
 = k

1
 r,  ρ

2
 = k

2
 r. 

 

In order to solve Eqs. (2)$(9) and find the scattered 

field E 
s, H 

s, the expansion of the fields in terms of vector 
spherical harmonics and determination of the amplitudes of 
partial waves is used in the PMSS method, as in the Mie 
theory: 

 

E 
s = ∑

n=0

∞

  ∑
m= $n

n

 (a
n m

 M1
n m

 + b
n m

 N1
n m

) , (10) 

 

H 
s = ∑

n=0

∞

  ∑
m= $n

n

 χ
1
 (a

n m
 N1

n m
 $ b

n m
 M1

n m
) , (11) 

 

E 
2 = ∑

n=0

∞

  ∑
m= $n

n

 (c
n m

 M2
n m

 + d
n m

 N2
n m

) , (12) 

 

H 
2 = ∑

n=0

∞

  ∑
m= $n

n

 χ
2
(c

n m
 N2

n m
 $ d

n m
 M2

n m
) . (13) 

 

Here the fields are expanded in terms of vector spherical 
harmonics of the form: 
 

M 
1
n m

 = h(1)
n

(ρ
1
) Y(0)

n m
 , (14) 

N
 
1
n m 

=
 

1
ρ
1

 
d

d
 
ρ
1

[ρ
1
 h(1)

n
(ρ

1
)]Y(1)

n m
 + n(n + 1) 

h(1)
n

(ρ
1
)

ρ
1

 Y($ 1)
n m

, (15) 

M 
2
n m

 = j
n
(ρ

2
) Y(0)

n m
 , (16) 

N 
2
n m

 = 
1
ρ
2

 
d

d ρ
2

 [ρ
2
 j

n
(ρ

2
)] Y(1)

n m
 + n(n + 1) 

j
n
(ρ

2
)

ρ
2

 Y($ 1)
n m

 . (17) 

 

The vector spherical functions are determined by the 

well$known relationships5 
 

Y(0)
n m

 = 
i

n( n + 1)
 ⎝
⎛

⎠
⎞i 

m

sin θ
 Y

n m
 e

θ
 $ 

d Y
n m

d θ
 e

ϕ
, (18) 

 

Y(1)
n m

 = 
1

n( n + 1)
 ⎝
⎛

⎠
⎞d Y

n m

d θ
 e

θ
 + i 

m

sin θ
 Y

n m
 e

ϕ
, (19) 

 

Y($ 1)
n m

 = Y
n m

 e
r
 , (20) 

where  

Y
n m

 = ei m ϕ Pm
n
 (cos θ) 

(2 n + 1) (n $ m)!
4 π( n + m)!

 , (21) 

 

j
n
(ρ) and h(1)

n
(ρ) are the Bessel and Hankel functions of the 

first kind, respectively, and Pm
n
(cosθ) are the associated 

Legendre polynomials. 
The PMSS method supposes first of all the representation 

of the surface S determined by Eq. (1) in the spherical 
coordinates, and the expansion of the physical parameters 
determining the boundary conditions in the power series in 
terms of the perturbation parameter ε 

 

a
n m

 = ∑
p=0

∞

  ∑
n=0

∞

  ∑
m= $n

n

 a 
p
n m

 ε
 
p,  b

n m
 = ∑

p=0

∞

  ∑
n=0

∞

  ∑
m= $n

n

 b 
p
n m

 ε
 
p, (22) 

 

c
n m

 = ∑
p=0

∞

  ∑
n=0

∞

  ∑
m= $n

n

 c 
p
n m

 ε
 
p,  d

n m
 = ∑

p=0

∞

  ∑
n=0

∞

  ∑
m= $n

n

 d 
p
n m

 ε
 
p. (23) 

 

Thus, the solution of the boundary problem reduces to finding 

the coefficients of expansion of four partial amplitudes a 
p
nm

, 

b 
p
nm

, c 
p
nm

, and d 
p
nm

. 

Since the coefficients at zero power of ε are the 
coefficients of the Mie solution, the other terms of expansion 
in series are the corrections to the Mie coefficients of the 
corresponding order. Knowing them, it is possible to find the 
characteristics of the scattered field. They can be found upon 
substitution of expansions into the boundary conditions. The 
differential equations are considered in this derivation because 
the spherical functions satisfy them. 

Combining the terms with the higher-order perturbation 
coefficients from infinite sequence of pairs of resulting 
boundary conditions (after setting the expressions at different 
powers of ε equal to zero) and integrating these equations 
considering the property of orthogonality, we obtain two 
linear algebraic systems. Solving them results in recursion 
relations for corrections to the Mie coefficients: 

a 
p
n m

 = 
1
Δ

1

 ⌡⌠
0

2π

 dϕ ⌡⌠
0

π

 (α0
n
 T

p
 Y(1)*

n m
 $ α1

n
 S

p
 Y(0)*

n m
) sin θ dθ , (24) 

 

b 
p
n m

 = 
1
Δ

2

 ⌡⌠
0

2π

 dϕ ⌡⌠
0

π

  (α1
n
 T

p
 Y(0)*

n m
 $ α0

n
 S

p
 Y(1)*

n m
 ) sin θ dθ , (25) 

 

c 
p
n m

 = 
1

k Δ
1

 ⌡⌠
0

2π

 dϕ ⌡⌠
0

π

 (β0
n
 T

p
 Y(1)*

n m
 $ χ β1

n
 S

p
 Y(0)*

n m
) sin θ  dθ , (26) 

 

d 
p
n m

 = 
1

k Δ
2

 ⌡⌠
0

2π

 dϕ ⌡⌠
0

π

 (β1
n
 T

p
 Y(0)*

n m
 + χ β0

n
 S

p
 Y(1)*

n m
) sin θ dθ . (27) 

 

Let a plane clockwise or counterclockwise polarized wave 
be incident on a scatterer. Then the electric and magnetic 
fields of the incident light can be expanded into series in 

vector spherical harmonics8 (the factor exp($iωt) is omitted in 
the paper): 

 

E i
@
 = E

0
 ∑
n=0

∞

  in 4 π(2 n + 1) (M
n ± 1

 ± N
n ± 1

) , (28) 
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H i
@
 = χ

1
 E

0
 ∑
n=0

∞

  in 4 π(2 n + 1) (N
n ± 1

 ± M
n ± 1

) , (29) 

 

where the plus sign corresponds to the clockwise polarization, 
and the minus sign corresponds to the counterclockwise 
polarization. Then the expressions for the operators T

p
 and S

p
 

have the form: 
 

S
p

 =∑
n, m

  ∑
q=1

p

  [F
q
(Q 

q

0 n m
 Y(0)

n m
 + Q 

q

1 n m
 Y(1)

n m
) + α

q
 Q 

q
n m

Y
n m
], (30) 

T
p

 =∑
n, m

  ∑
q=1

p

 [F
q
(R 

q
0 n m

 Y(0)
n m

 + R 
q
1 n m

 Y(1)
n m
) + α

q
 Rq

n m
Y

n m
], (31) 

 

where
 
 

F
q
 = f q / q! , α

q
 = ∇

Ω
 F 

q = α f q $ 1
 / (q $ 1)! , α = ∇

Ω
 f, 

 

Q 
q
0 n m

 = k c 
p $ q
n m

 α 
q
n
 ρ 

q
20

 $ a 
p $ q
n m

 β 
q
n
 ρq

10
, 

 

Q 
q
1 n m

 = k d 
p $ q
n m

 α 
q + 1
n

 ρ 
q
20

 $ b 
p $ q
n m

 β 
q + 1
n

 ρq
10

, 

 

Q 
q
n m

 = ρ
10

 (d 
p $ q
n m

 ηq $ 1
n

 ρ 
q $ 1
20

 $ b 
p $ q
n m

 ηq $ 1
n

 ρq $ 1
10

) n( n + 1) , 

 

R 
q
0 n m

 = $ k d 
p $ q
n m

 α 
q
n
 ρ 

q
20

 + χ b 
p $ q
n m

 β 
q
n
 ρq

10
, 

 

R 
q
1 n m

 = k c 
p $ q
n m

 α 
q + 1
n

 ρ 
q
20

 $ χ a 
p $ q
n m

 β 
q + 1
n

 ρq
10

, 

 

R 
q
n m

 = ρ
10

 (cp $ q
n m

 σ 
q $ 1
n

 ρ 
q $ 1
20

 $ χ ap $ q
n m

 ηq $ 1
n

 ρq $ 1
10

) n(n + 1)   

 

for q = 1, 2, ... , p $ 1, 
 

Q 
p
0 n @ 1

 = k c0
n @ 1

 α 
p
n
 ρ 

p
20

 $ a0
n @ 1

 β 
p
n
 ρ 

p
10

 $ G
n
 γ 

p
n
 ρ 

p
10

, 

 

Q 
p
1 n @ 1

 = k d0
n @ 1

 α 
p + 1
n

 ρ 
p
20

 $ b 
0
n @ 1

 β 
p + 1
n

 ρ 
p
10

 ∓ G
n
 γ p + 1

n
 ρ 

p
10

, 

 

Q 
p
n @ 1

 = ρ
10

 ( do
n @ 1

 σ 
p $ 1
n

 ρ 
p $ 1
20

 $ b0
n @ 1

 η 
p $ 1
n

 ρ 
p $ 1
10

) ∓  
 

∓ G
n
 λp + 1

n
 ρp

10
 n( n + 1) , 

 

R 
p
0 n @ 1

 = $ k d0
n @ 1

 α 
p
n
 ρ 

p
20

 + χ b0
n @ 1

 β 
p
n
 ρ 

p
10

 ± χ G
n
 γ 

p
n
 ρ 

p
10

, 

 

R 
p
1 n @ 1

 = k c0
n @ 1

 α 
p + 1
n

 ρ 
p
20

 $ χ a0
n @ 1

 β 
p + 1
n

 ρ 
p
10

 $ χ G
n
 γp + 1

n
 ρp

10
, 

 

Rp
n @ 1

 = ρ
10

 ( c0
n @ 1

 σ 
p $ 1
n

 ρ 
p $ 1
20

 $ χ a0
n @ 1

 η 
p $ 1
n

 ρ 
p $ 1
10

 $ 

$ χ
 
G

n
 λp + 1

n
 ρp

10
) n( n + 1) , 

 

G
n
 = 4π(2 n + 1) in, 

and  

αp
n
 = 

d p

d ρp
2

 [ρ
2
 j

n
(ρ

2
)]ρ

2
=ρ

20
, β 

p
n
 = 

d p

d ρp
1

 [ρ
1
 h(1)

n
(ρ

1
)]ρ

1
=ρ

10
 , (32) 

 

σ 
p
n
 = 

d p

d ρp
2

 
⎣
⎡

⎦
⎤j

n
(ρ

2
)

ρ
2 ρ

2
=ρ

20

,  η 
p
n
 = 

d p

d rp
1

 
⎣
⎡

⎦
⎤h(1)

n
(ρ

1
)

ρ
1 ρ

1
=ρ

10

 , (33) 

 

γ 
p
n
 = 

d p

d ρp
1

 [ρ
1
 j

n
(ρ

1
)]ρ

1
=ρ

10
 ,  λ 

p
n
 = 

d p

d ρp
1

 
⎣
⎡

⎦
⎤j

n
(ρ

1
)

ρ
1 ρ

1
=ρ

10

 , (34) 

 

Δ
1
 = (χ α0

n
β1
n
 $ α1

n
β0

n
) ,  Δ

2
 = (α0

n
β1

n
 $ χ α1

n
β0
n
) . (35) 

 

Thus, it follows from Eqs. (24)$(31) that calculation of 
the corrections to the Mie coefficients reduces to calculation of 
integrals of the form: 

I
1
 = ⌡⌠

0

2π

 dϕ ⌡⌠
0

π

 Φ(θ,ϕ) Y(0)
n m

 Y(0)*
n′ m′ sin θ dθ , (36) 

 

I
2
 = ⌡⌠

0

2π

 dϕ ⌡⌠
0

π

 Φ(θ,ϕ) Y(1)
n m

 Y(0)*
n′ m′ sin θ dθ . (37) 

 

Really, other kinds of integrals lose their significance 
because the identities take place 

 

Y(0)
n m

 Y(0)*
n′ m′ = Y(1)

n m
 Y(1)*

n′ m′ ,  Y(1)
n m

 Y(0)*
n′ m′ = Y(0)

n m
 Y(1)*

n′ m′ . (38) 

 
To calculate I

1
 and I

2
 it is necessary to carry out another 

expansion 

Φ(θ,ϕ) = ∑
k = 0

∞

  ∑
l = $ k

k

 Φ
k l

(θ,ϕ) Y
k l

(θ,ϕ) . (39) 

 

Really, in this case the integral orthogonality relations 
and other relationships derived in Ref. 5 yield 

 

I
1
 = ∑

k = 0

∞

  ∑
l= $k

k

 Φ
k l

 
(2 n + 1) (2 n′ + 1)

4π(2 k + 1)
 ( $ 1)k + l + n′ + m′ + n + 1 × 

× C 
k 0
n′0 n0

 Ck $ l
n′ $ m′ n m

 
⎩
⎨
⎧

⎭
⎬
⎫k n′ n

1 n n′
 , (40) 

 

I
2
 = ∑

k = 0

∞

  ∑
l= $k

k

 Φ
k l

 C 
k $ l
n′ $ m′ n m

 ( $ 1)k + l + n′ + m′ + n + 1 × 

× 
⎝
⎛ ( n′ + 1) (2 n′ + 1) C 

k 0
( n′ $ 1)0 n0

⎩
⎨
⎧

⎭
⎬
⎫k n′ $ 1 n

1 n n′
 + 

+ 
⎠
⎞n′ (2 n′ + 3) C 

k 0
( n′ + 1)0 n0

⎩
⎨
⎧

⎭
⎬
⎫k n′ + 1 n

1 n n′
, (41) 

 

where C 
jm
j1m1

 
j2m2

 are the Clebsch$Gordan coefficients, and 

⎩
⎨
⎧

⎭
⎬
⎫ j j

1
j
2

m m
1

m
2

 are the Wigner 6j$symbols. 

All integrals are regular, so the optical characteristics of 
light scattering are calculated in terms of the amplitude 
functions of the scattered field. 

In conclusion, we present the recursion formulas for the 

functions α 
q
n
, β 

q
n
, σ 

q
n
, η 

q
n
, γ 

q
n
, and λ 

q
n
: 

 

α 
q
n
 = q j( q $ 1)

n
(ρ

20
) + ρ

20
 j( q)

n
(ρ

20
) , 

 

σ 
q
n
 = 

1
ρ

20

( j( q)
n

(ρ
20

) $ q σ 
q $ 1
n

) , (42) 

 

β 
q
n
 = q h( q $ 1)

n
(ρ

10
) + ρ

10
 h( q)

n
(ρ

10
) , 

 

ηq
n
 = 

1
ρ

10

 ( h( q)
n

(ρ
10

) $ q ηq $ 1
n

) , (43) 

 

γ 
q
n
 = q j( q $ 1)

n
(ρ

10
) + ρ

10
 j( q)

n
(ρ

10
) , 

 

λ 
q
n
 = 

1
ρ

10

 ( j( q)
n

(ρ
10

) $ q λ 
q $ 1
n

) . (44) 
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One can find the recursion formulas for the Bessel and 

Hankel functions and for their derivatives of the qth order in 

Ref. 9. 
 

3. CALCULATED RESULTS 

 
Convergence of the PMSS method is illustrated by the 

data given in the tables. 
Results of calculations for a spherical particle with 

diffraction radius ρ = 3 perturbed to a sphere with ρ = 3.45 
for the refractive index m = 1.212 + i 0.601 are given in 
Table I. The data for ρ = 8 → 8.4 and m = 1.212 + i 0.0601 
are given in Table II. 

 
TABLE I. 
 

N K
ext
 I(θ = 0°) K

sc
 I(θ = 180°)

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
 

0 

1.0841 
1.2383 
1.3129 
1.3138 
1.3101 
1.3112 
1.3124 
1.3121 
1.3119 
1.3119 
1.3120 

 

1.3120 

0.865990 
1.019322 
1.091631 
1.110172 
1.113392 
1.112781 
1.112167 
1.112218 
1.112291 
1.112280 
1.112269 

 

1.112278 

0.9652 
1.2345 
1.2085 
1.1696 
1.1687 
1.1779 
1.1772 
1.1732 
1.1735 
1.1749 
1.1748 

 

1.1745 

0.002215 
0.001413 
0.004078 
0.002552 
0.001824 
0.001812 
0.001981 
0.001973 
0.001964 
0.001966 
0.001968 

 

0.001967 

 

TABLE II. 
 
 

N K
ext
 I(θ = 0°) K

sc
 I(θ = 180°)

0 

1 

2 
3 
4 

5 
6 

7 
8 
 

0 

2.7672 

2.7939 

2.7964 
2.7985 
2.7989 

2.7979 
2.7978 

2.7980 
2.7980 

 

2.7980 

5.586794 

5.989660 

6.143039 
6.163910 
6.160829 

6.158985 
6.159033 

6.159237 
6.159276 

 

6.159270 

1.8439 

1.9033 

1.8578 
1.8544 
1.8554 

1.8547 
1.8546 

1.8548 
1.8548 

 

1.8547 

0.000386 

0.001316 

0.000887 
0.000618 
0.000652 

0.000671 
0.000669 

0.000671 
0.000671 

 

0.000670 

 
The optical characteristics calculated by the Mie 

theory for spheres with indicated initial and final radii are 
given in the first and the last rows of the tables, 
respectively. The algorithm was tested for convergence in 
the example of a sphere with r = a perturbed to a sphere 
with r = a(1 + ε). The serial number of the row in the table 
corresponds to the order of perturbation. The values of the 
extinction efficiency factor are given in the second column, 
the values of the forward scattering phase functions are in 
the third column, the values of the scattering efficiency 
factor are in the fourth column, and the values of the 
backscattering phase function are in the fifth column. 

As is seen from the tables, convergence of numerical 
estimates is reached for the given values of the initial 
parameters by taking into account the corrections up to 
eighth and tenth orders. However, even higher orders can be 
needed for other initial data, especially for perturbed 
nonspherical shape. 

To illustrate the influence of the particle shape on the 
light scattering properties, let us present the results of the 
model estimations by the PMSS method for spheroid taking 
into account two corrections. 

Representation of the three$axes ellipsoid with the half$
axes a/(1 $ uε), a/(1 $ νε), and a/(1 $ wε) as a series 
expansion in terms of spherical functions has the form 

 

f = uξ2 + νη2 + wζ2 , (45) 
 

ξ = 2π/3 (exp ($ i ψ
0
) ( i sin ϕ

0
 $ cos θ

0
 cos ϕ

0
) Y
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+ exp(i ψ
0
)(i sinϕ

0
 + cos θ

0
 cosϕ

0
) Y

1$1
 $ 2 sin θ

0
 cosϕ

0
 Y

10
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η = 2π/3 (exp ( $ i ψ
0
) ( i cos ϕ

0
 + cos θ

0
 sin ϕ
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) Y

11
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+ exp(i ψ
0
)(i sinϕ
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 + cos θ

0
 cosϕ
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) Y

1$1
 + 2 sin θ

0
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ξ = 2π/3 ($ exp($ i ψ
0
) sin θ

0
 Y

11
 + exp(i ψ

0
) sin θ

0
 Y

1$1
 + 

 

+
 

2 cos θ
0
 Y

10
) . (48) 

 

The coefficients of the expansion in series in terms of 

spherical functions for f k, k = 1, 2, ..., p are found under 
the program based on Eqs. (46)$(48) that implements the 
convolution algorithm. 

Angular dependence is shown in Fig. 1 for the 
normalized values of four elements of the scattering phase 
matrix at the scattering angle θ (in the plane ϕ = 0) that 
characterize the polarization properties of light scattered by 
a spheroid (the simplest everywhere convex shape). The 
analogous data for the inverted spheroid of the simplest 
shape with concave region (dumb$bell-shaped body) are 
shown in Fig. 2. 

 

 

 

 
 

FIG. 1. Angular dependence of the normalized elements of 

the scattering phase matrix for a spheroid calculated by the 

perturbation method considering different number of 

corrections. 
 



284 Atmos. Oceanic Opt. /December 1995/ Vol. 8, No. 4 D.N. Romashov et al. 
 

 
 

 
 

FIG. 2. The same for inverted spheroid. 
 

The scattering particle in both cases was oriented at the 
Euler angles θ

0
 = π/4, ϕ

0
 = 0, and ψ

0
 = 0 to the incident 

radiation. The diffraction radius of the nonperturbed sphere was 
ρ = 5, the refractive index was m = 1.212 + i0.0601, ε = 0.01, the 
degree of perturbation along the half$axes was determined by the 
values u

ε
, ν

ε
, and w

ε
, where u = ν = 4.6544 and w = 10. Incident 

plane light wave was linearly polarized along the x axis. 
Curves 1 are for the angular light scattering functions of 
nonperturbed sphere, curves 2 are for the calculated data taking 
into account only the first order of perturbation, and curves 3 are 
 

for calculations taking into account the perturbation correction of 
the second order. 

As is seen from Figs. 1c and d and Figs. 2c and d, the 
elements S

13
 and S

14
 of a sphere at any θ vanish and their 

nonzero values characterize the degree of shape deviation from a 
sphere, i.e., the particle nonspherisity. Their angular behavior is 
essentially different for perturbation of different sign. It also 
should be noted that the degree of depolarization is more 
pronounced at small scattering angles for inverted spheroid (i.e., 
with concave region on its surface) than for elongated spheroid. 
It also should be added that the angular dependence calculated 
for first and second corrections has more pronounced difference 
for inverted spheroid than for elongated spheroid with 
everywhere convex surface (Figs. 2c and d). 
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