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Some of the results obtained from solving the problem of spectral line periphery 
are summarized.  Several examples are given to illustrate the potentialities of our line 
wing theory as applied to important spectroscopic uses in atmospheric optics. 

 

1. PHYSICAL PICTURE OF SPECTRAL LINE WINGS 
 

Spectral regions with relatively low molecular 
absorption are of great importance in atmospheric optics.  
First, they largely determine the spectrum of the outgoing 
terrestrial radiation and thereby affect the estimates of 
the heat balance of the planet.  Second, the spectral 
measurements provide information on the optical 
properties of aerosol, an important atmospheric 
constituent which is so changeable that in some cases the 
data of this type appear to be the only means of its 
control.  Third, it is in these regions where the 
frequencies are chosen for systems operating through the 
atmosphere. 

When considering these spectral regions, researchers 
are faced with nontrivial problems having a long story.  
The best known example is the problem of the 8–12 μm 
spectral region concerning the real cause of nonselective 
attenuation (to stress this fact, the term "continuum" is 
used) which occurs due to water vapor.  This problem 
will be discussed in Sec. 2.  Another example is the long–
wave wing of the 4.3 μm CO

2
 band which is well–known 

in practice in connection with observations of rocket 
flames and in theory, because the well–studied structure 
of the CO

2
 spectrum makes this wing a "proving ground", 

in a literal sense of the word, for verification of concepts 
for a description of the line periphery (see Sec. 3). 

Academician V.E. Zuev pointed out these facts as 
early as 1966 in Ref. 1, where he predicted that the 
description of the line periphery would undoubtedly lead 
scientists to seek for new physical ideas.  Notably, he 
made that observation when it was widely believed that 
the Lorentzian line shape played a pivotal role in 
atmospheric optics applications.  The validity of that 
prognosis was demonstrated elsewhere2 and in this paper 
we will give a short comment. 

Figure 1 reminds one of the definitions of the terms 
used in the discussion below.  Levels 1 and 2 of the 
absorbing ("active") molecule are shifted to positions 1' 
and 2' due to its collision with a "buffer" molecule to 
give a certain line shape, i.e. a nonzero absorption 
coefficient κ at a frequency ω different from ω

0
.  The line 

shape periphery (spectral line wings) is determined by the 

condition Δω = ⏐ω – ω
0
⏐ > γ, where Δω is the frequency 

detuning (see the shaded areas under the curve in 
Fig. 1b).  Peculiarities of the line periphery are entirely 
related to molecular collisions responsible for the line 
broadening, because consideration of the Doppler effect is 
merely a computational problem. 

 

 
 
a 
 

 
 

   b 
FIG. 1. On the definition of the line shape, γ is the line 
halfwidth and ω

0
 is the line center, i.e. transition 

frequency in an isolated molecule. 
 
The following picture typical of small frequency 

detuning is well–known.  An active molecule interacts 
vigorously with the field along the free path.  However, no 
absorption of a photon results, for the energy conservation law 
(the "golden Fermi rule" in terms of quantum mechanics) 
breaks down here.  The collision re–establishes the 
equilibrium disturbed by the field, brings the molecule back to 
its initial "low" state, and "transmits" the absorbed photon to 
the "buffer" molecule, whereas the active molecule leaves the 
collision to immediately start the cycle again. 

At large frequency detunings the active molecule is 
indifferent to the field within the free path.  It is during 
collision when the conditions for fulfilment of the "golden 
rule" are set up.  Since the absorbed photon is "loaded" on 
the active molecule, the cycle can be repeated provided 
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there occurs relaxation process via a number of subsequent 
collisions.  This stage of evolution of the molecule will be 
termed "drift". 

The most remarkable fact is that, in the course of 
relaxation, the excess internal energy of the molecule gives 
rise to its directional transfer (a sort of "molecular chaos 
ordering") for a distance comparable to the wavelength.  
The long–wave approximation for molecular centers–of–
mass, which is generally taken for granted with little or no 
comment on frequent occasions, is no longer valid.  This 
brings into existence an effect in the imaginary part of the 
dielectric constant ε associated with the absorption 
coefficient known as spatial dispersion in quantum 
electrodynamics.  The latter implies the relation 

D(r) = ε' E(r) + i ⌡⌠ d r' f(r') E(r – r') instead of  

D(r) = (ε' + i ε") E(r) between the induction D(r) and the 
field strength E(r).  Here ε = ε′+iε″, and f links D at a 
point r and the field at other points.  Incidentally, in 
electrodynamics this effect is generally discussed for ε′ 
(resulting, for example, in optical activity).  Hence, we can 
speak of a most specific manifestation of the spatial 
dispersion. 

Another factor determining new physical elements in 
the physical picture of the line periphery is an essential role 
of the classical (i. e. governing the dynamics of centers–of–
mass) intermolecular interaction potential V.  This is in 
effect made clear by Figure 1.  The line wings are formed 
by collisions at a small intermolecular separation R, and the 
Hibbs factor z ∝ exp(–V( R) / k Θ)  (where k is the 
Boltzmann constant, Θ is the temperature, and the 
probability for molecules to be separated by R is 
proportional to z) is of critical importance for the 
dependence of κ on temperature and frequency detuning. 

These considerations pertaining to the peculiarities of 
the line periphery were set forth consistently in the 
monograph3 edited by V.E. Zuev and subsequently 
developed, for example, in Refs. 4–7. 

A mathematical realization of these ideas implies a 
certain refinement of the initial expression for the 
absorption coefficient.  In fact, the commonly accepted view 
is based on the "binary concept", as it is called, wherein the 
events leading to the spectral line shape take place in a 
volume with dimensions essentially smaller than the light 
wavelength.  Therefore, the field can be assumed spatially 
homogeneous, which means the long–wave approximation 
for the centers–of–mass, and the many–particle aspect of 
the problem is reduced to a mere counting of the number of 
collisions.  However, as shown in Ref. 4 on the 
mathematical level of rigor, the long–wave approximation 
is not valid for a description of the line periphery, and the 
standard quantum–mechanical calculations of the photon 
absorption probability must be done again, this time 
without the long–wave approximation.  The resulting 
expression (within the known factor) has the form: 
  

κ(ω) = Re ⌡⌠
0

∞

 d t (exp (i ω t)) Tr A S B ρ S–1
 B*. (1) 

 
The unitary operator S is the solution of the Schrdinger 

equation i � ∂S / ∂ t = H S, where t is time; � is the Plank 

constant; ρ = (1 / Z) exp (– H / k Θ) is the Hibbs density 
matrix; Z is the normalization factor (Trρ = 1); B = M D, 
Ì is the projection of the dipole moment operator of the 
molecule on the unit vector of polarization of the field, 
D = exp (i (ω / c) (k

0
, r)), r is the coordinate of the 

center–of–mass of the active molecule, k
0
 is the unit vector 

of the Poynting vector of the field;   

A = ⌡⌠ d r′ δ(r′ – r) with the integral taken over an 

elementary volume, and the δ–function results from the 
definition of the dipole moment of the unit volume.  In the 
long–wave approximation D = A = 1, and Eq. (1) is 
transformed to a conventional expression for κ(ω). 

The pragmatic problems behind Eq. (1) are so essential 
that we have to resort to a trick which might seem strange 
at first sight – to construct an equation generally called 
kinetic equation for which the solution, i.e. Eq. (1), is 
already known.  In the kinetic equation the coefficients 
involve S and ρ, i.e. the new problem is by no means less 
complex than the initial one (which is quite natural, 
though).  However, the change to the binary version, 
classical centers–of–mass and other, more specific 
approximations is much more evident in these coefficients. 

If n, m ... are the quantum indices of the Hamiltonian 

of the active molecule, it appears that κ = ∑
n, m

 gnm(ω) Mmn, 

and the kinetic equation under discussion is of the form : 
 

i(ω – ωnm) gnm + Mnm ρ(1)
m  = (ω – ωnm)2

 Γnm + Inm . (2) 
 

In Eq. (2) Mnm and ρ(1)
m  are the matrix elements of Ì 

and ρ(1), the latter being the Hibbs density matrix of the 
active molecule, ωnm is the line center corresponding to the 

transition m → n, and Γnm and Inm are the matrix elements 

of the operators: 
 

Γ = ⌡⌠
0

∞

 d t (exp ( i ω t)) (Try C( t) ρ(2) gC–1( t))
(aν) Φ; (3) 

I = (1/i �) ⌡⌠
0

∞

 d t (exp (i ω t)) (Tr C [∂U/∂ t, ρ(2)
 g] C–1)

(aν) Φ. (4) 

 

Definitions (3) and (4) involve the operator g with the 
matrix elements gnm, the Hibbs matrix of the "bath" 

molecule ρ(2) (Try is the trace operation over its variables), 

and the solution of the o××dinger equation Ñ for two 
colliding molecules with the Coulomb energy of the 
intermolecular interaction U.  The classical motion of 
centers–of–mass is governed by the potential V mentioned 
earlier.  The notation 
 

(....)
(aν) = N ν ⌡⌠ d R R z( R) ⌡⌠ d t

0
 (5) 

 

denotes averaging over collisions, where N is the number of 
bath molecules in the unit volume, v is the average velocity 
of the active molecule, t

0
 is the onset of the collision (i.e. it 

defines the initial conditions of the equation for C), and Φ 
is the average of D over a function describing statistical 
properties of the "drift".  

The most essential thing is that the asymptotic cases of 
large and small frequency detunings  Δω = |ω – ω

0
| (ω

0
 

replaces here the line center frequency ω
nm) appear to be 

separated in the very equation (2).  We need only Eq. (3) 
to describe the line periphery, and Eq. (4) to describe the 
line center.  This fact is sure to considerably simplify the 
solution, because it enables one to resort to asymptotic 
methods in evaluating quantities (3) or (4) before solving 
Eq. (2). 
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A subsequent procedure for simplification of Eq. (3) 
begins with an asymptotic evaluation of the integral over t.  
In doing so, use can be made of the stationary phase method 
(which has been proved rigorously), and the equation for 
the stationary point can immediately be treated as a 
mathematical formulation of the energy conservation law.  
The favorable combination of mathematical and physical 
aspects is very symptomatic.  The fact is that in similar 

cases an estimate of the type ">" may be replaced by "≈". 
Reducing dynamical problems to consideration of just one 
point offers a considerable scope for further simplifications. 

First, there is no need to deal with the entire 
trajectory of the centers–of–mass at collision.  It will 
suffice to consider a close vicinity of the stationary point 
and to approximate this part of the trajectory by a straight 
line.  The Liouville theorem enables one to "transfer" 
averaging (5) to this very region.  Second, the quantum 
problem reduces to the search for the eigenvalues of the 
operator H

1
 + H

2
 + U ( H

1,2
 are the Hamiltonians of the 

active and bath molecules), and their parametric dependence 
on t.  (The latter enters into U via the classical centers–of–
mass).  Third, a fairly simple formula of the type 

R = C′ / Δωa, where C and a are constants, is found to be 
appropriate for approximation of the intermolecular 
separation at a stationary point, and Try ρ(2)(....) gives, 

together with the other numerical values from Eq. (5), one 
more constant D′.  These quantities are very slow functions 
of the frequency detuning. 

The final formulas for the absorption coefficient κj on 

the periphery of the line centered at ωj with the intensity Sj 

take the form: 
 
κ
j = Sj qj Fj Gj Φj ; 

 

q
j = (ω / ωj) (1 – exp (– � ω / k Θ)) (1 – exp (– � ωj / k Θ))–1

 ; 

 

Gj = D′ C′3/a (⏐ω – ωj⏐ + ⏐ω + ωj⏐ exp (� ωj / k Θ)); 

 

F
j = (1 / Rj) ⌡⌠

0

Rj

 R( R2
j – R2)–1/2 exp (– V( R) / k Θ) d R; 

 
Φj = exp (– (ω2 / c2) d τj). 

 
The last–written expression is derived for the simplest 
"diffusion" model of the drift, d is numerically equal to the 
diffusion coefficient at a pressure of 1 atm, and τ

j has the 

meaning of the relaxation time: 
 

τ
j = (2π N v ⌡⌠

0

R'j

 d R R exp(– V( R) / k Θ))–1,  R'j = α Rj 

 
with one more constant α.  For an extended discussion of 
the constants see Refs. 3–11, 17, and 19. 

We will not consider here specific applications 
because each of them would require a special and fairly 
detailed introduction.  It is apparent, however, that a 
simple and reliable procedure for calculating the input 
quantity, i.e. the light absorption coefficient, should form 
the basis of these applications.  These characteristics are 
predetermined by a clear and comprehensive physical 
picture of the line periphery. 

The subsequent sections should be regarded as an 
illustration of general concepts.  A list of similar 
examples can be made indefinitely long, and the cases 
discussed here are not anything unique.  In the 
monographs and papers cited above the reader may find 
descriptions of other bands of H

2
O and CO

2
 and spectra 

of other gases.  We can state that all the available 
experimental data on the light absorption and emission in 
the band and line wings (i.e. in the troughs between 
strong lines of a band) have been interpreted 
quantitatively. 

 
2. SPECTRAL REGION FROM 8 TO 12 µm 

 
Basic properties of the major atmospheric window, 

κ =a p P + bp2  (a = a(ω), b = b(ω)), where p and P are 
the partial pressure of the water vapor and the total gas 

pressure, bp2 > a p P even though P > p; d κ / d Θ > 0 
for atmospheric temperatures, have been long studied 
experimentally in considerable detail and are of necessity 
cited in the literature. 

It should be added that d κ / d Θ changes sign as Θ 
is further increased (see Fig. 2).  The calculations using 
LARA  software package developed at the Institute of 
Atmospheric Optics (IAO SB RAS) have shown that the 
problem should most probably be regarded by taking into 
account the weak lines with Lorentzian shape in the 
spectral region of interest. 

 

 
 

FIG. 2. The light absorption in the atmospheric 
windows.  Plotted on the ordinate is bp2, the dominant 

part of κ for frequency of 1200 cm–1.  Experimental 
data o and Δ are taken from Ref. 32  and  Q – from 
Ref. 33.  Solid line depicts the calculations using the 
approximate formula from Ref. 33, and the dashed line 
refers to the calculations cited in this paper. 

 
Methodically, the notable feature of the problem is 

that the known hypotheses on the origin of the continuum 
listed in the first column of Table I are indistinguishable 
in consequences from each other when the foregoing 
relationships are discussed.  For example, in all versions 
there appears the same factor exp(η / Θ) that describes 
the temperature dependence.  In doing so, the meaning of 
the constant η is different (see Table I).  However, the 
numerical values of these constants are roughly the same 
(needless to say that this fact can be properly accounted 
for), and it is impossible to decide between the potential 
candidates.  The rest of the relationships are also readily 
interpreted within the framework of any hypothesis. 
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TABLE
 
I. 

 

Hypothesis for the origin of 
continuum and the relevant reference The meaning of η 

Rotational band wings of water 
vapor34  

Potential well depth

H
2
O  dimers35 Binding energy 

Aerosol36 Evaporation heat per 
a molecule 

Ionic clusters37
 –"– 

Note 
 
that a suggestion was made that the 

continuum be treated as a quantum optics effect.38  
However, criticism of that approach is beyond the scope 
of the present paper. 

A way out of what might seem to be the impasse 
(the problem will not be solved in terms of universal 
constants, will it?) is in fact fairly obvious.  The ideas 
under discussion should be extended to include related 
areas (light emission, nonlinear optics, etc.).  This time, 
however, the implications would be radically different 
and direct experiments would completely solve the 
problem. 

The practical and scientific importance of the 
atmospheric window problem has been discussed time and 
again by Academician V.E. Zuev (see Refs. 1, 8–10 and 
the monograph11 by Professor V.V. Fomin, one of his 
disciples) who made a remarkable contribution to the 
development of a constructive approach to its solution.  
As a matter of fact, it has been formulated in the 
preceding paragraph and the results of its realization are 
generally outlined below. 

Let us begin with a problem on the emission 
coefficient χ appearing in the transfer equation.  A 
conventional treatment of self–radiation of the medium as 
quantum fluctuations of the equilibrium dipole moment 
within semiclassical electrodynamics, the fluctuation–
dissipation theorem known from statistical physics, and 
the Maxwell equations including fluctuations like the 
Langevin process hold that the necessary and sufficient 
condition for the local thermodynamic equilibrium (i.e. 
the relation χ = B κ where B is the Planck function) 
implies no spatial dispersion in Im ε.  As indicated in 
Section 1, it is the picture of the line periphery that may 
be a conceivable reason for this kind of dispersion, which 
is why the local thermodynamic equilibrium in band 
wings must be disturbed.  There is a reliable experimental 
verification of this prognosis,12,13 and it is in effect 
apparent that other assumptions for the nature of 
continuum fail to account for the fact being discussed. 

Another argument of comparable significance is 
concerned with nonlinear spectroscopy. The pertinent 
experimental program was performed at IAO SB RAS.14–16  
In Section 1 we have discussed the role of the classical 
potential of intermolecular interaction.  According to the 
quantum–mechanical laws V is the binary Coulomb 
energy averaged over the density matrix ρ of 
intramolecular variables.  In a strong laser field ρ 
depends on the field intensity I and the above–mentioned 
"causal chain" leads to the nonlinear effect, i.e. to the  
I–dependence of κ.  Particularly remarkable is the fact 
that nonlinear spectroscopy normally deals with resonant 
processes associated with isolated lines (systems with a 
small number of levels found in nonlinear optics).  In the 
situation discussed, on the contrary, the large frequency 
detuning requirement is as indispensible as that of the 
band wing where the sum of a large number of lines (in 

this regard the effect is cooperative) enhances weak 
nonlinear nonresonant interactions on quantum 
transitions.   

The experimental data have exhibited an isotopic feature 
of the nonlinear effect that κ( I) for H

2
O and D

2
O is different 

while the linear absorption for the two isotopes is the same.  
Another fact of interest is that the field dependence of the 
relaxation time in the resonance case is in complete contrast to 
that found in the nonresonance case.  Both results are 
explained quite naturally by theory of the line periphery. 

 

3. THE 4.3 µm CO
2
 BAND WING 

 
The possibilities of the line wing theory for a 

quantitative interpretation of the experimental data on the 
4.3 μm CO

2
 band wings were repeatedly demonstrated.  One 

of its practical applications is a time–saving computational 
procedure for the absorption coefficient and absorption 
function within the CO

2
 spectral bands,17 which ensures the 

"experimental" accuracy (i.e. the error does not exceed the 
measurement error).  As an illustration of qualitative 
potentialities of the theory mention can be made of double 
intersections of spectral curves taken at different temperatures 
and the parity between the limits of the piecewise 
approximation from Ref. 18 and those of so–called multipole 
dispersion naturally resulting from the theory per se, etc. 

Of certain practical interest is the identification of 
spectral "points" where the absorption coefficient is essentially 
independent of temperature.  Clearly, these frequencies are 
important for the problem of atmospheric sensing, for one of 
the unknowns can be eliminated by choosing appropriate 
frequencies.  A convincing example of evaluation of the total 
CO

2
 content from measurements of the vertical transmittance 

is given in Ref. 19. 
An interesting corollary to the theory is a possibility to 

solve an inverse problem of retrieving the classical 
intermolecular interaction potential from empirical data on the 
absorption coefficient in the band wings.  Four substantive 
issues are involved in this case.  First, the potential is 
identical to the one used in calculations of the 
thermodynamical quantities.  Second, its analytical form need 
not be specified beforehand, as distinct from other methods.  
Third, the line wing data provide information on the behavior 
of V at small intermolecular separations.  Fourth, the 
measurements at different Θ enable one to construct V(Θ).  
The very existence of the latter dependence follows from the 
definition of V in quantum mechanics (see Section 1), for ρ 
depends on Θ (see Ref. 20). 

 

TABLE II. 
 

ω, ñm–1
 Experimental κ, ñm–1 ⋅amagat–2

 Calculated κ

2410 0.00353 0.00326 

2420 0.00182 0.00180 

2430 0.00105 0.00106 

2440 0.000683 0.000693 

2450 0.000464 0.000474 

2460 0.000310 0.000311 

2470 0.000181 0.000182 

2480  0.000130 

Note: the experimental and calculated data are given for 
Θ = 920 Ê. 

Figure 3 and Table II are given as an illustration of 
the subject under discussion.  The temperature dependent 
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parameters ε and σ of the Lennard–Jones potential 
V(R) = 4 ε ((σ / R)12 – (σ / R)6) for the pair  
CO

2
 – CO

2
 were inferred from empirical data up to 

Θ = 700 K.  The temperature dependence of ε and σ was 
extrapolated to Θ =103 K. The results of comparison of 
the calculated absorption coefficient using this potential 
and the corresponding experimental data (see Table II) 
show an excellent agreement.  We can say with 
reasonable confidence that exact calculation is guaranteed 
of the temperature dependence of the absorption 
coefficient at frequencies used for inversion of the 
satellite–based data on the outgoing radiation. 

 

 
 

FIG. 3. Temperature dependence of parameters of the 
Lennard–Jones potential.  Solid curves depict ε and σ 
as solution of the inverse problem based on the 
experimental data from Ref. 33.  Dashed curves show 
extrapolation. 
 

4. NON–LTE IN THE UPPER ATMOSPHERE 

 
Let us consider at this point an example of 

implications of the fairly general aspects of the line wind 
theory that came to be comprehensible when discussing the 
line periphery.  We meant the behavior of the emission 
coefficient in the upper atmosphere.  In Section 2 mention 
has already been made of the relationship between 
disturbance of the local thermodynamic equilibrium (non–
LTE) and the spatial dispersion of the imaginary part of the 
dielectric constant.  At a low gas density the general factors 
responsible for the dispersion are quite obvious.  These are a 
long free path as compared to the wavelength and the effect 
of collisions on the Doppler line shape.  To the above 
circumstances must be added the factors leading to a 
deviation of the density matrix from the standard Hibbs 
form, viz fluctuations of the distribution function of the 
centers–of–mass and the chemical reactions involved.  The 
latter are of special importance for passive sounding of the 
upper atmosphere (e.g. limb measurements from satellite–
borne platforms). 

The relevant formulas are listed in Ref. 21.  Here it 
is worth considering a pure qualitative aspect but again 
associated with the very nature of the non–LTE in the 
upper atmosphere. 

The standard treatment of the problem pioneered in 
Ref. 22 and detailed in Refs. 23 and 24 proceeds from the 
postulate that occasional collisions found at low gas 
pressures fail to reestablish the equilibrium distribution of 
vibrational (and electronic) states.  At times (see, for 
example, Ref. 25) this point of view is expressed in a 
straightforward manner: "another" vibrational 
temperature is introduced into the density matrix and this 
new temperature is to be found from the solution of the 
inverse problem.  A "balance" scheme produces a means 
for translating this a priori assumption into mathematical 
terms.  It implies that intramolecular transitions induced 

by interactions with the field or by intermolecular 
collisions are assumed to be identical (in terms of 
"collisions"), additive and independent of each other 
when counting the events of arrival at or escape from an 
energy level.  In doing so, one cannot but mention a 
procedure used in writing the transfer equation wherein 
use is made of the Einstein coefficients.  All this would 
seem to impart a due solidity to the whole concept.  
However, nothing of the kind happens, as it is at this 
point where a subtle trap is hidden. 

Indeed, the use of the Einstein coefficients is 
undoubtedly an unexceptionable expedient when the 
equilibrium situation is discussed (for example, radiation 
in a cavity with absolutely black walls).  It is in this 
very case where, according to the rules of quantum 
electrodynamics,26 the "photon-particles" analogy is 
valid, since knowledge of the field energy will suffice for 
a complete description of the situation.  It should be 
remembered that the photon wave functions are defined in 
the space which is the Fourier–transform of a real 
space,26,27 and the validity of reference to the "photon-
particle" analogy (and consequently the legitimacy for 
collisions between two molecules and those between a 
molecule and a photon to be treated identically) should 
be proved separately.  This pertains equally to the 
concept of the "photon density" which is a must when 
writing the transfer equation is such a manner.  However, 
this equation is intended for a description of the light 
propagation which is rather a nonequilibrium process, in 
the sense that use should be made of travelling waves 
rather than standing waves that are associated with the 
equilibrium of the very field itself.  (As is the case, for 
example, with a closed cavity with no energy transfer.  
The vanishing of the Poynting vector is the governing 
feature of standing waves). 

The fundamental consequence of this view on the 
problem is that the emission coefficient appears to be a 
function of intensity (!?).  Such a situation according to 
the rules of modern statistical semiclassical 
electrodynamics is to be encountered only in the case of a 
strong laser field (see discussion of this problem, for 
example, in Ref. 28).  It has long been realized (for 
example, in the problem of the line shape) that, when 
solving any specific problem of the interaction between a 
molecule and a field, it is the effect of collisions on this 
interaction that must be examined.  (Some qualitative 
aspects have been mentioned in Sec. 1).  The calculations 
are performed in the framework of the equation for the 

density matrix (or the Schr⋅⋅odinger equation) wherein, 
naturally, the field and the collisions are by no means 
independent or equal in their rights.  The use of a similar 
procedure (which, incidentally, is common in laser 
physics,28 nonlinear spectroscopy9 and plasma physics30) 
does result in a combination of the Maxwell equations, 
Schrdinger equation and the fluctuation-dissipation 
theorem with the consequences for the emission 
coefficient discussed earlier in this section. 

For the spatial dispersion of the type discussed in 
Sec. 1 the relations for  κ and  χ have the form: 
 

κ = (4 πω / c) Im Γ(ω, λ)  
λ=(ω/c)

; 

 

χ = (4 � ω5
 / π2 c4) ⌡⌠

0

∞

 
d λ λ2 Im Γ(ω, λ) Λ(ω, λ)

 ⏐λ2 – ω2 / c2 – (4 πω2 / c2) Γ(ω, λ)⏐2 , 

 
where Γ is the Fourier transform of f over r,  
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Λ = ∑
n,

 
m

  
ρ(1)

n  + ρ(1)
m

ρ(1)
n  – ρ(1)

m

 Γn m 
, 

 
and Γ

nm
 appear upon representation of κ as a sum over the 

spectral lines (if Tr in Eq. 1 is written explicitly).  The last 
expression is a general formulation of the fluctuation-
dissipation theorem in the case where the density matrix is 
different from the Hibbs form (owing to, say, the chemical 
reactions), otherwise we have: 
 

Λ = 
1 + exp (– � ω / κ Θ)

1 – exp (– � ω / κ Θ)
 Γ. 

 
Worthy of mention is yet another interesting physical 

problem pertaining to the construction of the distribution 
function W(r, t, v) for the centres-of-mass r and their 
velocities v (t is the time), which, as a matter of fact, provides 
a description of the spatial dispersion of Im ε for low gas 
densities. The formulation of such a physical kinetics problem 
is also due to the physical picture of the line shape. It is 
precisely here that an answer is hidden to the question: 
whether the use of the Voigt contour  alone in the calculations 
relating to the upper atmosphere is justified, inasmuch as the 
Voigt contour ignores the effect of collisions on the Doppler 
line shape, which appears to be an essential factor. 
Incidentally, it is to be noted that an extensive body of 
experimental evidence of this effect was produced at 
IAO SB RAS,31 with the development of the relevant 
experimental techniques being initiated by Academician 
V.E. Zuev. 
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