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The ray tracing technique based on the radiative transfer equation is used to 
describe the spontaneous emission amplification in an active medium. Using this 
approach, analytical solutions for the intensity distribution and coherence function in 
the exit plane of the active medium with parabolic profiles of dielectric constant and 
emission coefficient in the transverse cross section have been derived. Applicability of 
the approximation when contribution to output emission is made only by spontaneous 
sources adjacent to the far end of the active medium is analyzed. It is demonstrated 
that this approximation is inapplicable in many real situations, and it is necessary to 
take into account the sources in the whole active medium. 

 

Investigation of the spontaneous emission amplification 
in active media having nonuniform distribution of population 
density inversion is important for developing the noncavity 
lasers, that is, lasers without cavity reflectors (mirrors). 
Unlike conventional lasers, for which the coherent properties 
of output radiation are determined to a great extent by the 
type and quality of a cavity, noncavity laser output radiation 
is completely determined by the spatial distribution of 
refractive and amplifying properties of an active medium. 

There are several approaches to the theoretical 
description of output radiation of the lasers of interest. All of 
them are based on paraxial approximation of the wave 
equation. The approach based on the expansion of the wave 
field into an infinite series in transverse modes1,2 is most 
widely used. 

This approach is close to conventional methods used in 
laser optics. However, it can be practically used for a limited 
number of dielectric constant and gain profiles in an active 
medium for which transverse modes can be derived 
analytically. The second approach3 is based on the numerical 
solution of the paraxial wave equation by the fast Fourier 
transform and splitting operator methods. Spontaneous 
emission is simulated by the Monte Carlo method by 
introducing of a random initial phase. The coherence function 
is calculated by averaging over 100–200 temporal steps. 

The third approach is based on a solution of the equation 
for the transverse coherence function.4,5 Using this approach, 
the authors succeeded in solving analytically the problem for a 
number of dielectric constant profiles including the case of 
saturation of the emission amplification. 

The approach based on a solution of the radiative 
transfer equation is presented in this paper. This equation is an 
approximate consequence of the equation for the transverse 
coherence function and allows one not only to implement 
effective numerical algorithms for solution of the given 
problem but also to derive analytical solutions for nonuniform 
distributions of dielectric constant and gain in an active 
medium. 

1. The paraxial wave equation  
 

2 i κ 
∂E
∂z  + ∇2

⊥
 E + κ2Δε(z, ρ) E(z, ρ) = Psp(z, ρ) (1) 

 

is considered as an initial one, where k is the wave number, 
Δε is the relative perturbation of the complex dielectric  

constant, Psp is the term caused by the presence of 

spontaneous polarization in a medium, and r = (z, ρ). 
Let us consider an active medium with relative 

distribution of dielectric constant of the form 
 

Δε(z, ρ) = ε(z, ρ) + i σ (z, ρ) , (2) 
 

where ε is the real component and σ is the imaginary 
component of dielectric constant connected with the gain of 
the medium g by the following relation:  
 

σ (z, ρ) = – κ–1 g (z, ρ) . 
 

The form of the functions ε and σ is determined by spatial 
distribution of population density inversion in the medium. 
Spontaneous emission is caused by the presence of random 
polarization, which is supposed to follow the Gaussian 
statistics and satisfies the condition 
 
<Psp(r)P*sp(r′)> = Weff(r) g0 δ(r – r′) , (3) 

 
where Weff is the effective intensity of spontaneous 

emission, and g0 is the gain at the origin of coordinates. In 

this case we can write the equation for the coherence 
function in the approximation of paraxial optics 
 

2 i κ 
∂Γ2

∂z  + 2 ∇
R

∇
ρ
Γ2 + κ2 [Δε(z, R + ρ/2) – 

 

– Δε*(z, R – ρ/2)] Γ2(z, R, ρ) = 
ig0

k  Weff(z, R) δ(ρ) , (4) 

 
where summed (R = (ρ1 + ρ2)/2) and difference (ρ = ρ1 – ρ2) 

transverse coordinates are used. 
The coherence function vanishes for ρ larger than the 

coherence length ρc. Then for ρc < a
⊥
 (a

⊥
 is the 

characteristic scale of Δε variation along the transverse 
coordinate ρ) we can use an approximate expansion in the 
Taylor series 
 
Δε(z, R + ρ/2) – Δε*(z, R – ρ/2) ≈ ρ∇

R
ε(z, R) + 2 iσ(z, R). (5) 

 
Substituting Eq. (5) in Eq. (4), we derive the equation  



838   Atmos. Oceanic Opt.  /November–December  1994/  Vol. 7,  Nos. 11–12 A.A. Zemlyanov and V.V. Kolosov 
 
 

 

∂Γ2

∂z  +[ ]
1
i κ ∇ρ

∇
R
 + 

κ

2 i r ∇R
 ε(z, R) + κ σ (z, R)

Γ2(z, R, ρ) = 

= 
g0

2 κ2 Weff(z, R) δ(ρ) . (6) 

 

Equation (6) differs from the corresponding equation 
derived in Ref. 4 by the presence of the source function in 
its right–hand side. 

Furthermore, taking the Fourier transform with respect 
to ρ, we obtain the equation 
 

∂J
∂z + ⎣

⎡
⎦
⎤n

⊥

κ
 ∇

R
 + 

κ

2 ∇R
 ε ∇

n⊥
 + κ σ (z, R)  J(z, R, n

⊥
) = 

 

= 
g0

8π 2κ2 Weff(z, R) , (7) 

 

where J is the emission brightness which is defined as a 
Fourier transform of the coherence function 
 

J(z, R, n
⊥
) = (2π)–2 ⌡⌠

 
 ⌡⌠

 
 

–∞  

∞

Γ2(z, R, ρ) exp(–i n
⊥
 ρ) dρ . (8) 

 

The solution of Eq. (7) can be written in the form 
 

J(z, R, n
⊥
) = 

 

= 
g0

8π 2κ2 ⌡⌠
0

z

 
 dz′ Weff(z′, R(z′)) exp [  ⌡⌠

z'

z

 
 dz′′ g(z′′, R(z′′))]

 

 

, (9) 

 

where the characteristic R = R(z′) obeys the equation: 
 

d2R

dz2  = 
1
2 ∇R

 ε(z,R(z)) (10) 

 

with the initial conditions R(z′ = z) = R, dR(z′ = z)/dz′ = n
⊥
. 

The system of equations (9) and (10) can be solved 
numerically for an arbitrary form of the functions ε and g. 
The algorithm for its numerical solution and analysis of the 
accuracy of the given technique are presented in Refs. 6–8. 

2. Let us consider the analytical solution for parabolic 
distribution of population density inversion. We suppose that 
the functions ε and g can be written for this case in the form 
 

ε(R) = 1 + (R2 – a2)/L2
R

 , ⏐R⏐<a ,  ε(R) = 1 , ⏐R⏐ > a , 
  (11) 
g(R) = g0(1 – R2/a2) , ⏐R⏐<a ,    g(R) = 0 , ⏐R⏐ > a .  

At first, let us determine the contribution to the 
output brightness from an infinitely thin layer of emitters 
located in the plane z = z0, i.e., assume that 
 

Weff(z, R) = W
δ eff(R) δ(z – z0) . 

 

Then it follows from Eq. (9) that
 
 

J
δ
(z, R, n

⊥
) = 

g0

8π 2κ2 Wδ eff(R0) exp [  ⌡⌠
z0

z

 
 dz′ g(z,R(z′)) ]  , (12) 

 

where the characteristic R = R(z′) is determined by the 
expression 
 

R(z′) = R0/cosh((z′ – z0)/L
R
) + 

n
⊥

κ
 L

R
 
sinh((z′ – z)/L

R
)

cosh((z′ – z0)/L
R
)
 (13) 

 

and satisfies the boundary conditions: R(z′ = z0) = R0, 

R(z′ = z) = R. Substituting Eqs. (11) and (13) into 
Eq. (12) and integrating it over z, for |R| < a we obtain 

 

J
δ
(z, R, n

⊥
) = 

W
δ eff(R0)

8π 2κ2  exp (g0(z – z0)) × 

× exp
⎩
⎨
⎧ 

 
– 

g0LR

4a2 ⎣
⎡ 
 

R2(sinh(2z–) +2z–) + 

n2
⊥
L2

R

κ
2  (sinh(2z–) – 2z–) – 

 

–
2

(cosh(2 ) 1RL
z

⊥ ⎫
− ⎬

⎭

Rn

κ

, (14) 

where z– = 

z – z0

L
R

. Then for the coherence function we can write 

 

Γ2δ(z, R, ρ) = 
⌡⌠

 

 ⌡⌠
 

 

–∞  

∞

dn
⊥
 J(z, R, n

⊥
) exp (i n

⊥
ρ) = 

 

= 
⌡⌠

 

 ⌡⌠
 

 

–∞  

∞

dR0 
dn

⊥

dR0
 J(z, R, n

⊥
(z – z0, R, R0) × 

×
 
exp [i ρ n

⊥
 (z – z0, R, R0)] , (15) 

 

where we carry out the integration over spatial coordinates 
in the emission plane instead of integration over angular 
coordinates in the exit plane. Determinant of such a 
transition is equal to  
 

dn
⊥

dR0
 = 

κ
2

L2
R
 sinh2(z–)

 , (16) 

where the expression  
 

n
⊥
 = κ [R cosh(z–) – R0] / [L

R
 sinh(z–)] , (17) 

 

which follows from Eq. (13), is taken into account. Let us 
assume that the effective intensity of sources in the emission 
plane z = z0 is distributed by the law 

 
W

δ eff(R0) = W
δ0 exp (– R2

0 / a2) . (18) 

 
This expression should be considered as an approximation, 
since for rigorous formulation of the problem, the source 
intensity distribution should duplicate the gain distribution, 
i.e., it should have the parabolic profile. Substituting 
Eqs. (16), (17), and (18) into Eq. (15), we obtain 
 
Γ2δ(z, R, ρ) = 

 

= 

W
δ0 g0 exp (g0(z – z0))

8π 2 L2
R
 sinh2(z–)

 exp 
⎝
⎛

⎠
⎞i κ R r

L
R
 tanh(z–)

 exp⎝
⎛

⎠
⎞– 

R2

a2  A  × 

 

×
⌡⌠

 

 ⌡⌠
 

 

–∞  

∞

dR0exp⎝
⎛

⎠
⎞– 

R2
0

a2  [1 + A] exp⎝
⎛

⎠
⎞– 

R0

a2  [2RB – i ρC]  , (19) 
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where A=
g0LR

2  
sinh(z–) cosh(z–)–z–

sinh2(z–)
, B=

g0LR

2
sinh(z–)–z– cosh(z–)

sinh2(z–)
,  

and C = 
L

D

L
R 

sinh(z–)
 . The integral over R0 in Eq. (19) is 

readily calculated analytically. Then we can write the 
following expressions for the output emission intensity: 
 

W
δ
(z, R) = Γ2δ(z, R, ρ=0) = 

W
δ0

8π  

a2g0 exp(g0 z)

L2
R
 sinh2(z–)(1 + A)

 exp
⎝
⎛

⎠
⎞– 

R2

a
w

2  

(20) 
and for the output coherence function on the axis of the 
active medium 

Γ2 δ(z, R = 0, ρ) = 

W
δ0

8π  
g0 exp(g0 z) a

2

L2
R
 sinh2(z–) (1 + A)

 exp
⎝
⎛

⎠
⎞– 

ρ2

4 a
ρ
2 , (21) 

 

where a
w

2  = a2(1 + A) / (A + A2 – B2) , and a
ρ
2 = 

= a2(1 + A) / C 2 . 
Thus to obtain the final result, it is necessary to 

integrate over all emitting planes, i.e., over z0: 
 

Γ2(z, R, ρ) = ⌡⌠
0

z

 
 d z0 Γ2δ(z – z0, R, ρ) . (22) 

 

However, for active media with the high gain G = g0 z > 10 

(this gain is typical of X–ray lasers) the main contribution 
to the output emission is made by the thin end region of the 
active medium 0 < z0 < zeff. In this case, we finally obtain 

 

Γ2(z, R, ρ) = zeff Γ2δ(z – z0, R, ρ)⏐
z0=0 

, (23) 

 

where zeff is determined from the expression 
 

zeff = ⌡⌠
0

z

 
 exp (– g0 z0) dz0 = 1/g0 n z . (24) 

 

Strictly speaking, the approximation given by Eqs. (23) and 
(24) is valid when all functions in the solution given by 
Eqs. (21) and (22) vary slowly with increasing z in 

comparison with exp(g0z). However, the function sinh(z–) 

enters into the denominators of Eqs. (20) and (21), whose 
variations are comparable with exp(g0z) at small values of 

L
R
 (L

R
 ≈ 2/g0). In this case, the effect of emission sources 

in the whole active medium should be taken into account. 
3. To determine how much is the contribution from 

emission sources located beyond the end region of the active 
medium, it is necessary to integrate over z0 in accordance 

with Eq. (22) and compare the result obtained with the 
approximation given by Eqs. (23) and (24). However, when 
we are interested only in the transverse coherence length of 
output emission, the problem is essentially simplified. Let 
us introduce the following definition for the transverse 
coherence length ρc: 
 

ρc
2 = 

1
4π⌡⌠

 

 ⌡⌠
 

 

–∞  

∞

dρ μ(ρ) , (25) 

where μ is the modulus of the degree of coherence on the axis  

μ(ρ) = 
⏐Γ2(z, R = 0, ρ)⏐

W(z, R = 0)  = 
⏐Γ2(z, R = 0, ρ)⏐

Γ2(z, R = 0, ρ = 0)
 . (26) 

 

For the approximation given by Eq. (23) we obtain the 
following expression from Eqs. (21), (25), and (26):

 
 

ρc = a
ρ
(z – z0) z0=0

 
= 

= 
1

F
x
 z–

 sinh(z–) + 
G

2z–
 (sinh(z–) cosh(z–) – z–) , (27) 

 

where F
x
 = κa2/z is the Fresnel number. This result is in 

good agreement with estimates made within the geometric 
optics approximation.9 Using Eq. (22), from Eqs. (25) and 
(26) we have 
 

ρc
2 = 

1
4π 

⌡⌠
 
 ⌡⌠

 
 

–∞  

∞

dρ ⌡⌠
0

z

  d z0 Γ2δ(z –z0, R = 0, ρ)

⌡⌠
0

z

  d z0 Wδ
(z – z0)

 . (28) 

It follows from Eqs.
 
(21) and (22) that 

 

⌡⌠
 
 ⌡⌠

 
 

–∞  

∞

dρ Γ2δ(z –z0, R = 0, ρ) = ar
2(z – z0)Wδ

(z – z0,R = 0) = 

= Pc0 
exp (– g0 z0) , (29) 

where Pc0 = 
W

δ0 g0

8πκ2  exp (g0 z). It should be noted that Pc0 

does not depend on the transverse size of the active medium. 
Then taking into account Eq. (29), from Eq. (28) we obtain 
the expression for the transverse coherence length 

 

ρc = ⎣
⎡ 
 

g0 ⌡⌠
0

z

  d z0 aρ
2(z – z0) exp (– g0 z0) ⎦

⎤ 
 

–1/2

 . (30) 

 

The transverse coherence length calculated using formulas 
(27) and (30) is plotted in Fig. 1 as a function of the 
parameter G

R
 = g0 LR

. 

 
FIG. 1. Normalized transverse coherence radius versus the 
parameter G

R
 = g0 LR

 calculated using Eq. (27) (solid 

lines), Eq. (30) (dotted lines), and Eq. (31) (dashed lines). 
Calculations were carried out for the gain G = g0 z = 15. 
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Values of the coherence length calculated in 
accordance with the van Cittert–Zernike theorem 

 

ρc = z/ka (31) 
 

are shown by dashed lines. These values correspond to the 
active medium with uniform distribution of population 
inversion in a cylindric region ⏐R⏐ ≤ a. As is seen, 
calculations according to formulas (27) and (30) practically 
coincide at high values of G

R
 when zeff n z. As the value of 

G
R
 decreases, the calculations become different. At G

R
 ≈ 2 

the calculated results differ more than twice. This indicates 
that the approximation given by Eqs. (23) and (24) is 
inapplicable in these situations being often encountered for 
X–ray lasers. 

 
CONCLUSION 

 
Thus the analytical solution to the problem of 

spontaneous emission amplification has been obtained for 
active medium with parabolic transverse profiles of dielectric 
constant and gain. The obtained solutions for the intensity 
distribution given by Eq. (20) and the coherence function 
given by Eq. (21) in the exit plane of the active medium are 
sufficiently rigorous solutions to radiative transfer equation (7) 
and hence to equation (6) for the coherence function. Only 
one approximation was made in the derivation of Eqs. (20) 
and (21), namely, the parabolic profile of spontaneous source 
intensity was approximated by Gaussian distribution (18). 

However, the equations (6) and (7) themselves were 
derived from the rigorous equation for coherence function (4) 
using the approximation given by Eq. (5). It is easy to verify 
that for parabolic profiles of ε and g given by Eq. (11), 
approximation (5) is rigorous for the real component of 
dielectric constant ε and approximate for its imaginary 

component σ. Using Eq. (5), we omit the term i 

ρ2

4  ∇
R

2 σ(z, R), 

which describes "excess" diffraction caused by the wave   

distortion due to inhomogeneous absorption of the energy in 
the transverse cross section. The role played by this term 
can be found by comparison of solutions (20) and (21) with 
those of rigorous equation (4) for parabolic profiles of ε and 
σ given by Eq. (11). The solution of equation (4) exists, 
but its consideration is beyond the scope of the present 
paper. We will only point out that approximation (5) can 
be used if the condition z n 2LD/(g0 LR

) is valid, and this 

condition is valid in most real situations. Moreover, using 
approximation (5) for determination of the coherence 
length, we should make calculations by Eq. (26) instead of 
the rigorous definition  
 

μ(ρ) = 
⏐Γ2(z, R = 0, ρ)⏐

W(z, R = ρ/2) W(z, R = –ρ/2)
 , (26) 

 
since it leads to incorrect results in the given case. 
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