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Stationary clearing up of water aerosol by a laser beam at lateral movement of the medium 
relative to the beam is investigated. The deterioration in performance of clearing up is shown to 
take place under thermal blooming and diffraction of the beam. The boundaries of clearing up 
regions are determined (from given levels of intensity transmission in the beam center) in the 
space of similarity factors. The specific examples in physical variables are given in the paper. 
 

The extensive bibliography conserning studied problem is 
contained in Refs. 1–6. The analytical solution of the problem 
in the approximation of water nature of aerosol and in the 
geometric–optics limit was considered in Refs. 3, 4, and 7–11. 
There are a lot of versions of this solution in which beam 
divergence, thermal blooming, etc. were considered within 
various ranges of accuracy. The first attempts to construct a 
numerical solution with due regard for diffraction and thermal 
blooming were made in Refs. 12–14. 

A beam propagation in aerosol medium is described by a 
system of equations of paraxial optics and aerohydrodynamics. 
Let axis z be directed along beam passage, whereas axis x is 
directed along lateral component V´ of velocity of the 
movement of beam or aerosol medium relative to each other 
(or wind velocity). In dimensionless form the optical equation 
with boundary conditions is as follows:  

2F 
∂u
∂z + i ∇2

⊥u = – [2i F N ρ1(I; M; PeD) + Na + Nb w] F u, (1) 

u  
z=0

 = u0(x, y, t) , u  
x, y→å∞

 → 0 . (2) 

 In Eq. (1) ∇2
⊥
 = ∂2/∂x2 + ∂2/∂y2; u is a complex function 

of electromagnetic field (related to dimensionless intensity by 
relationship I = uu*); u0(x, y, t) is a known distribution of 

this function at the start of path;  
F = 2πr20/λL is Fresnel number; r0 is an initial beam radius; λ 

is radiation wavelength; α is characteristic path length; 
Na = αg L is a parameter of molecular (gas) absorption of 

radiation; αg is a linear (m–1) coefficient of radiation 

absorption by vapor–air mixture; Nb = bw*L is a parameter 

of aerosol extinction; w* is an initial characteristic water 

content of a medium, i.e., concentration of liquid (droplet) 
aerosol phase; b = ba + bd is a specific coefficient of aerosol 

extinction of radiation (m2/kg); ba and bd are absorption and 

scattering coefficients, respectively; N = (L/LT)
2 is a 

parameter of the beam thermal blooming; 

LT = r0/ ε (n0–1)/n0 is a length of thermal blooming; 

ε = ba (1–βm) w* I* ta/ρghg is a scale of disturbance of 

medium density; ρg, hg = CpT0, and n0 are an initial density, 

enthalpy (temperature T0, thermal capacity Cp), and refractive 

index of undisturbed air; βT is a dimensionless coefficient 

characterising the part of absorbed energy which is spent for 
drop evaporation (βT = 0.3–1.0 in dependence on initial 

temperature T0, characteristic intensity I*, and initial radius  

of the drop rd0); and ta = r0/V⊥ is a characteristic 

aerodynamic time ( time of medium particle transit across 
beam). Coordinate z was related to L, coordinates x and y 
were related to r0, and radiation intensity I – to characteristic 

value I* The value I* is a maximum value for originally 

normal (Gaussian) distribution considered below 

I  
z=0

= 
Iphys

I
*

 = I0(x, y, t) = exp (– (x2 + y2)phys / r20) f(t) , 

where f(t) is a temporal law of intensity changing in the 
initial cross section (further f(t) is a step function). 

The dimensionless function ρ1 in equation (1) describes 

disturbance of vapor–air medium density 
Δρ/ρg=1 + ερ1(x, y, z, t) and it is obtained together with 

function of water content w from equations of 
aerohydrodynamics  
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ρ1  
t=0

 = 0;  ρ1  
x→–∞

 → 0 ; (4) 
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∂
∂t + 

∂
∂ x  w = 

1
PeD

 ∇2
⊥ w – Nv w I ; (5) 

w  
t=0

= w0(x, y, z) ;  w  
x→–∞

→ w0(x, y, z) . (6) 

  
Here w0(x, y, z) is initial distribution of the function of 

water content; Nv = ta/tv is an evaporation (clearing up) 

parameter; tv = H0/baβT I*
 is characteristic time of aerosol 

evaporation; H0 is a water evaporation heat (in J/kg) ; 

Nt = t0/ta is parameter of nonstationary; t0 is characteristic 

duration of a pulse; Pe = ρgCp V⊥r0/k0 is a Peclet number 

of gas; k0 is a thermal conduction coefficient of undisturbed 

gas; PeD = V⊥r0/D is a diffusion Peclet number; and, D is 

a coefficient of turbulent diffusion of liquid (drop) phase. It 
is assumed in the present paper that Mach number 
M´ = V⊥/c (c is sonic speed in a medium) is close to zero 
and acoustic disturbances are small. Thermal conduction 
and diffusion are ignored in the paper too. It should be 
noted that there are some situations when drop diffusion is 
essential. Coefficient of turbulent diffusion amounts to 
D ∼ 10–4–10–3 m2/sec in laboratory artificial mist.3,9,15 A 
Peclet diffusion number may be a value of unity order when 
r0 = 0.01 m and V⊥ = 0.1 m/sec. 
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Considerable long pulses t0 . ta, tν (Nt . 1) for 

which the establishment of stationary regime of clearing up 
occurs will be studied in the present paper. In the other 
limiting case of very short pulses t0 n ta (Nt n 1) the 

clearing up process will be essentially nonstationary; 
relative medium movement can be ignored, and it is 
necessary to substitute pulse duration t0 for aerodynamic 
characteristic time ta in the parameters of blooming N and 

evaporation (clearing up) Nν. 

Passing to intensity I and phase ϕ (or to deflection 
angle ϑ = V⊥ϕ by substitution u = I exp (–iFϕ)) in 
Eq. (1), we obtain the following system:  

( )∂
∂ t + (ϑ, V⊥) ϑ=N V⊥ρ1 + 

1
4 F2 V⊥⎩

⎨
⎧

⎭
⎬
⎫V2

⊥ I
I

 

–
 

(V⊥ I,V⊥ I)

2 I2 ; (7) 

( )∂
∂ z + (ϑ, V⊥)  ln I + (V⊥, ϑ) = – Na – Nb w . (8) 

 The equation
 
(7) demonstrates that in the geometric–

optics limit F→∞ the error due to neglect of diffractional 
term amounts to O(F–2). It should be noted that vapor–air 
mixture absorbs radiation several orders weaker than drop 
liquid phase. In view of that, we assume Na = 0. First of 
all, we examine the influence of thermal blooming 
(parameter N) and diffraction (Fresnel number F) on 
clearing up process (at Nν, Nb ∼ 1). 

In the geometric–optics limit (F→∞) and without 
thermal blooming (N = 0) the system of equations (8) and 
(5) has a known analytical solution

 
 

I(x, y, z, t) = 
I0(x, y, t)

{1 + [exp (τ0) – 1] exp (– E0)}
 ; (9) 

w(x, y, z, t) = 
w0(x – t, y, z) exp (τ0 – E0)

{1 + [exp (τ0) – 1] exp (– E0)}
 ; (10) 

τ0 = Nb ⌡⌠
0

z

 w0 (x, y, z′) d z′; (11) 

E0 = Nν ⌡⌠
0

t

 I0(x – t + t′, y, t′) d t′, (12) 

where τ0 is an optical thickness of nondisturbed aerosol 

medium; E0 is an energy variable, i.e., energy that would 

have been absorbed by the moment t per unit area of aerosol 
medium without disturbance intensity I. 

The homogeneous medium w0 = 1 is considered in the 

present paper. In this case optical thickness at z = 1 coincides 
with extinction parameter τ0 = Nb. Energy variable for 

originally Gaussian stationary distribution equals  

E0(x, y, z, t) = Nν ⌡⌠
x– t

x

  exp (– x′2 – y2) d x′  
t→∞

 = 

= Nν ⌡⌠
–∞

x

 exp (– x′2 – y2) d x′ .  (13) 

Let us take the analytical solution (9)–(13) as an 
initial base of investigation. The numerical solution of 
system (1)–(6) was obtained as in Ref. 16 using method of 
Fourier fast transform (FFT). The results of calculations are 
presented in Figs. 1–4 and in the table. Figure 1 shows 
change of intensity peak Im(z) = max {I(x, y, z)}  

x,y
 with the 

path z, intensity in the center I00(z) = I(x=0, y=0, z) 
(dashed line), and square of beam mean radius

 
 

r2
c(z)/r2

0= ⌡⌠
  –∞

   ∞

⌡⌠[(x – xc)
2+ (y – yc)

2] I( x, y, z) dx d y ,  

where xc= ⌡⌠
  –∞

   ∞

⌡⌠x I d x d y and yc= ⌡⌠
  –∞

   ∞

⌡⌠ y I d x d y are 

coordinates of center of gravity of intensity distribution. 
Four specific cases are presented: 1 – Nb = 1, Nν = 1, 

N = 0, and F = 10 corresponding to a moderate extinction 
and clearing up without thermal blooming and diffraction 
(geometric optics); 2 – Nb = 2.5, Nν = 3, N = 0, and 

F = 10 corresponding to strong clearing up and extinction; 
3 – Nb = 0.5, Nν = 1, N = 1, and F = 10 corresponding to 

thermal blooming along with moderate extinction and 
clearing up without diffraction, and 4 – Nb = 0.5, Nν = 1, 

N = 0.1, and F = 1 corresponding to an influence of 
diffraction divergence on the medium clearing up. The 
intensity profiles I(x, y=0, z=1) are constructed in the 
separate fragment in the direction longitudinal with respect 
to wind at the end of the beam path. The intensity peak 
shifts downflow (curves 1 and 2 in fragment), since clearing 
up is maximum in the lee area of beam. Intensity peak is 
higher on the curve 2 than on the curve 1  though  
extinction  parameter  (Nb)2 

> (Nb)1. 

 
 

FIG. 1. Intensity profiles I(x)⏐y=0; z=1 (fragment). 

Change of intensity peak Im (solid curves), intensity in 

the beam center I00(z) = I(x=0, y=0, z) (dashed curves), 

and square of beam mean radius r2
0(z)/r2

0 with path.  
 

This is explained by the fact that evaporation in the 
case 2 are stronger (Nν)2 > (Nν)1 and water content w in 

extinction integral I ∼ exp (–Nb⌡⌠w dz) is less than that in 

case 1 of moderate clearing up. The mean beam radius rc 

decreases in case 2 as against case 1. It attests that beam as 
a whole focuses at clearing up amplification. Thermal 
blooming (curves 3) results in the following effects: beam 
expansion and decreasing of intensity peak; shifting of peak 
and beam as a whole towards a flow of aerosol medium. 
Diffraction when F∼1 (curves 4) leads to beam divergence  
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and essential decreasing of intensity peak. Numerical results 
of the versions 1 and 2 within the computation error 
correspond to the Glickler analytical solution (9)–(13). 

The table results allow the analysis of the influence of 
thermal blooming and diffraction within wide range of 
parameters N = 0–1 and F = 1–10. In decreasing of Fresnel 
number the essential differences from geometric–optics limit 
are observed at F≤3. In accordance with Eqs. (7) and (8) 
the difference from geometric–optics limit must be less than 
10% at F > 10 ≅ 3.16 and not more than 1% at F > 10. It 
should be noted that at F = 10 intensity values I are closer 
to analytical solution which is strictly valid at F = ∞, than 
corresponding values of water content w. At F < 1 
diffraction divergence of beam is very large, and intensity at 
the end of path decreases more than twice, and there is 
practically no clearing up.

  

TABLE. Decreasing of intensity value in the beam center  
I00= I(x=0, y=0, z=1) in parameter of thermal blooming N 

increasing and Fresnel number F decreasing.
 
 

Nν =1 

Nb=0.1 Nb=0.5 

N=0 F=10 N=0 F=10 
F I00 N I00 F I00 N I00 

∞ 
10 
5 
3 
2 
1 

0.958 
0.949 
0.919 
0.850 
0.765 
0.473 

0; F=∞ 
0; F=10 

0.1 
0.3 
0.5 
1.0 

0.958
0.949
0.898
0.810
0.728
0.575

∞ 
10 
5 
3 
2 
1 

0.789 
0.786 
0.750 
0.700 
0.620 
0.368 

0; F=∞ 
0; F=10

0.1 
0.3 
0.5 
1.0 

0.789
0.786
0.743
0.665
0.607
0.481

Increasing
 
of thermal blooming parameter N at fixed 

values of other similarity factors results in noticeable 
decreasing of radiation transmission by medium at N > 0.2. 
Intensity at the end of path in aerosol medium is reduced by 
more than 40% at N > 1. 

The use of similarity factors N, F, Nb, Nν, and others 

minimize a number of possible versions at change of 
physical parameters. Every parameter characterises one 
physical process (mechanism or property of medium or 
beam). At the same time, different specific problems in 
physical variables can correspond to one and the same 
situation in similarity factors space.  

 

 
 

FIG. 2. Boundaries of areas of radiation transmission at 
the end of path in the similarity factors space nN–F. by 
intensity levels I00 = I00(z = 1) = 0.9 (1), 0.7(2), and 

0.5(3). Evaporation parameter Nv = 1. Extinction 

parameter Nb = 0.1 (curves 1, 2, and 3) and Nb= 0.5 

(curves 2′ and 3′). Example I: Nν= 1, Nb= 0.5, N = 0.915, 

and F = 4.74; Example IV: Nν = 1, Nb = 0.5, and 

N = 0.293; F . 1. 

 
 

FIG. 3. Clearing up areas in coordinates nN–Nb. by 

intensity levels at the end of the path I00 = 0.9(1), 0.8(2), 

0.7(3), 0.6(4), 0.5(5), 0.4(6), and 0.3(7). Clearing up 
(evaporation) parameter Nv = 1. Fresnel number F = 10. 

Example II: Nν = 1, Nb = 0.51, N = 0.441, and F = 10. 

Example V: Nν = 1, Nb = 1, N = 0.586, and F . 1. 

 
The areas of aerosol clearing up are plotted on the 

nN–F. plane in Fig. 2 by the levels of transmitted 
radiation at the end of path I00 = I00(z = 1) = 0.9, 0.7, and 

0.5 (curves 1, 2, and 3) at fixed parameters of extinction 
Nb = 0.1, 0.5 and evaporation Nν = 1. In Fig. 3 clearing up 

areas are constructed by levels of I00 in the similarity 

factors space nN–Nb. for fixed values of evaporation 

parameter and Fresnel number. Clearing up areas are placed 
on the left and below boundary curves 1–7. 

Clearing up areas in the similarity factors space 
nNν–Nb. are constructed in Fig. 4 by intensity levels at 

the end of the path I00 = 0.9, 0.8, 0.7, 0.5, 0.3, and 0.1 

(curves 1–6) for N = 1 and F = 10. Given level of 
aerosol medium transmission is realized on the left and 
above curves 1–6. For comparison corresponding 
boundaries of clearing up areas at N = 0 are marked by 
dashed line. The fact of essential extension of clearing up 
areas with no thermal blooming should be noted. 

 

 
 

FIG. 4. Clearing up areas in the space nN–F.. 
Parameter of thermal blooming N = 1 (solid curves) and 
N = 0 (dashed curves). Example III: Nν = 1, Nb = 1.16, 

N = 1, and F = 10. Example VI: Nν = 2.56, Nb = 1, 

N = 1, and F . 1.
 
 

Let us consider specific examples. Let T0= 273 K, 

ρg= 1.225 kg/m3, hg = 2.73⋅105 J/kg, λ = 10.6 μm;  
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I
*
 = 106 W/m2, ba= 100 m2/kg, rd0 = 5 μm; b = 1.72 ba 

(Ref. 3, p. 144), and H0 = 2.5⋅106 J/kg. 

Value of βT can be estimated approximately in the 

following way.17 It is known that if intensively heated the 
drop temperature Td reaches maximum value Tm during a very 

short time interval, and then the drop is evaporated at 
practically constant temperature Td ≅ Tm during a more long 

time interval. When dTd/dt ≅ 0 we cane17 
 

βT = jm(Tm) H(Tm) / jT(Tm) . (14) 

1
Tm

 = 
1

Tboil
 – 

R
μν H0

 ln 
⎣⎢
⎡

⎦⎥
⎤ba rw I

*
 rd0 μg

3 rg Dg H0 μv
 , (15) 

where Tboil and ρw are boiling temperature and water density, 

respectively; μg and μν are molecular weight of air and vapor 

(water); H0 = H(T0); Dg is coefficient of vapor diffusion in 

air; and, jm and jT are densities of mass and heat flows from 

drop surface (for expression for jT see Ref. 18). Using 

Eqs. (14) and (15) and following the procedure described in 
Ref. 17 for computation of jm and jT, the value of βT can be 

found at given levels of incident radiation intensity I
*
. For 

example, at initial temperature T0 = 273 K and drop radius 

rd0 = 5 μm we obtain: βT = 0.47, 0.62, 0.78, and 0.93 at 

intensity I* = 106, 3⋅106, 107, and 3⋅107 W/m2. 

For field atmospheric conditions we consider a path 
L = 100 m in length with initial water content of mist 
w* = 2.91⋅10–5 kg/m3, wind velocity V⊥ = 0.531 m/sec, and 

initial beam radius r0 = 0.0283. In so doing we obtain example 

I: Nν = 1, Nb = 0.5, N = 0.915, and F = 4.74. Evaporation 

time and aerodynamic time are equal to tν = ta = 0.0532 sec. 

Example I is indicated by a circle with point in Fig. 2. The 
intensity level I00 at the center of beam transmitted through 

aerosol medium amounts to a just less than 0.5. 
In example II we take L = 53.3 m; w

*
 = 5.57⋅10–5 kg/m3, 

r0= 0.03 m, and V⊥ = 0.564 m/sec. The other physical 

parameters are stated without changing. Computations of 
similarity factors yield: F = 10, Nν = 1, Nb = 0.51, and 

N = 0.441. Example II is marked by a circle with a point in 
Fig. 3. The intensity level I00 at the beam center at the end of 

path exceeds 0.6. 
In the next example III we choose initial water content 

w
*
 = 1.27⋅10–4 kg/m3, the other physical parameters are the 

same as in example II. We have F = 10, N = 1, Nν = 1, and 
Nb = 1.16. This example is marked by a circle in Fig. 4. 

Clearing up is provided at the level I00 > 0.3. 

Let us consider several examples with laboratory paths. 
For laboratory conditions it is natural to take L ∼ 1 m as a 
characteristic path length, beam radius r0 ∼ 0.01–0.001 m, 

blowing air velocity V⊥ = 0.1–1 m/sec. In example IV we 
choose the following physical parameters: r0 = 0.01 m, 

V⊥ = 0.187 m/sec, L = 4 m, and w* = 7.25⋅10–4 kg/m3. 

Following values of similarity factors correspond to them: 
F . 1, Nν = 1, Nb = 0.5, and N = 0.293. This example is 

marked in Fig. 2 (by convention at F = 10) by square with a 
point. There is no influence of diffraction thermal, blooming is 
very small. We obtain the level of transmitted radiation I00 

close to 0.7 as a result of aerosol medium clearing up at the 
central point. 

Let us consider example V: w* = 0.00145 kg/m3; 

τ0 ≡ Nb = 1.0, i.e., the medium is optically dense. The rest 

physical parameters are the same as in the previous example. 
In this case, N = 0.586, Nν = 1.0, and F . 1. The considered 
version V is presented in Fig. 3. In comparison with the 
previous one IV more strong thermal blooming and aerosol 
extinction decrease the transmission level at the centre down 
to I00 ≅ 0.46. 

In example VI, presented in Fig. 4, we took 
r0 = 0.009 m, V´ = 0.262 m/sec, L = 4 m, I

*
 = 3⋅106 W/m2, 

βT = 0.62, and w* = 0.00145 kg/m3. Hence F . 1, N = 1, 

Nb = 1, and Nν = 2.56. We increase intensity of the beam 

incident on the aerosol medium a three times and velocity of 
air blowing the path almost one and a half times as compared 
with the previous example. In this case, the level of 
transmitted radiation at the central point amounts to 
I00 . 0.65. 

Thermal blooming plays an essential part in all 
considered examples. The presented examples demonstrate that 
investigation of clearing up process of water aerosol carried 
out in general plan covers a wide range of variable concrete 
physical problems.  
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