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The variance of random wandering and the mean intensity of a focused laser 
beam, propagating along horizontal and slightly elevated paths in the stratosphere are 
analyzed in the paper. Features are shown and assessments of influence of discoid 
inhomogeneities of the refractive index inherent to the stratosphere on the parameters 
under study are presented. 

 
INTRODUCTION 

 

The laser beam propagation in the troposphere where 
turbulent fluctuations of the refractive index adhere to the 
Kolmogorov––Obukhov laws by now is known in sufficient 
detail.1–5 The spectrum and effective scales of turbulent 
fluctuations of refractive index in the stratosphere differ 
essentially from those in the lower layer of the atmosphere. 
The experimental data on spectra of refractive index 
fluctuations in the stratosphere (Refs. 6–10) accumulated in 
the recent years allow us to study the variance of random 
wandering and the mean intensity of a laser beam 
propagating along horizontal and slightly elevated paths in 
the stratosphere. 

 
MODEL OF THE REFRACTIVE INDEX 

FLUCTUATIONS SPECTRUM 

 
The refractive index of the air for the optical 

wavelength range is determined by the expression1 
 
n = 1 + 10–6 (80P / T) , (1) 
 
where P is the pressure in millibars and T is the absolute 
temperature. The refractive index is a function of 
coordinates (n = n(r), r = {z, x, y}) due to regular and 
random variations of temperature and pressure. For 
atmospheric conditions the amplitude of temperature 

fluctuations T
∼
 = T – < T > is much less than the magnitude 

of mean of temperature < T > (⏐T
∼
⏐ n <T>), and the 

pressure fluctuations P
∼
 = P – <P> in Eq. (1) can be 

neglected as compared with the temperature ones. As a 
result for the refractive index N = n – 1 we can write 
 
N(r) = <N(r)> [1 + ν(r)] , (2) 
 

where < N(r) > = 10–6(80<P(r)>/<T(r)>) is the mean of the 
refractive index, 
 

ν(r)= [N(r) – <N(r)>] / <N(r)> = – T
∼
(r) / <T(r)> (3) 

 

signifies relative fluctuations of the refractive index 
determined by temperature ones. 

For the stratosphere (height h runs between 11 and 
50 km) over a wide range of latitude and longitude the mean 
of the refractive index <N> can be considered as a function of 

the distance R from the Earth's center <N> = N
–

(R) only. The  

refractive index decreases with the altitude increase 
exponentially,11 therefore, the following function is a 

good approximation for N
–

(R) in the altitude range of 
⏐R – R

1
⏐ ∼ H

0
 : 

 

N
–

(R) = N
–

(R1) exp [– (R – R1) / H0] . (4) 

 
The parameter H

0
 therewith is from 5 to 8 km. 

Fluctuations of the refractive index ν(r) are caused by 
turbulence of the atmosphere. The source and the nature of 

turbulent fluctuations of temperature T
∼
, determining 

random variations of the refractive index, differ 
significantly, for instance, in the case of atmospheric 
boundary layer (up to 1 km height) and for the 
stratosphere. As known, the main source of dynamic 
turbulence in the atmospheric boundary layer is the 
presence of a sufficiently large vertical gradient of the mean 
wind velocity due to friction of the air against the Earth's 
surface. The thermal stratification therewith can essentially 
affect the intensity and scales of fluctuations of air flow 
velocity. When vertical gradient of the mean temperature 
differs from adiabatic gradient (the stable or unstable 
stratifications take place), then the dynamic disturbances 
will cause temperature fluctuations. The high–frequency 
temperature (refractive index) fluctuations are characterized 
by isotropy, and the inertial subrange of the spatial 
spectrum of refractive index inhomogeneities is described by 
the Kolmogorov–Obukhov law.1,12,13 

Contrary to the boundary layer, the main source of 
dynamic turbulence in the free atmosphere (h > 1 – 1.5 km) 
is the loss of stability by waves, formed in inversion layers, 
on the tropopause, and in vicinity of other interfaces 
(gravity–shear waves), or appearing due to deformation of  

air flows by mountain obstacles (mountainous waves).14 In 
the stratosphere at heights of 11 to 25 km the temperature 
does not vary practically with the altitude, and above this 
layer the temperature increases due to ozone absorption of 
the UV solar radiation. Therefore, the temperature 
stratification at these altitudes is stable. In the stable 
stratified atmosphere the waves being excited by different 
external forces appear. The waves become unstable when 
interacting with each other, the wave crests are collapsed 
and, as a result of the collapse, the turbulent regions are 
formed where intense turbulent mixing of previously 
stratified air takes place. As a result of mixing inside a 
collapsed volume the stratification occurs corresponding to 
neutral equilibrium. The mixed volume spreads inside a  
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stratified layer of the atmosphere taking the form of a round 
relatively thin horizontal disc with a very sharp cutoff of air 
density. Such a mechanism of shaping of discoid 
inhomogeneities (discoids) has been considered in Ref. 15. 

In parallel with airborne14 and balloonborne16,17 
investigations into turbulence microstructure in the 
stratosphere, in recent years the extensive experimental data 
have been obtained for altitudes h > 20 km by means of 
spaceborne observations of star scintillations.6–10 An 
essential difference of the temperature fluctuations spectra 
from those observed in the troposphere has been discovered. 
That is the result of the above–described peculiarities of 
formation of turbulent perturbation of temperature field in 
the stratosphere. 

Let us assume that the Cartesian coordinate system 
origin is at the Earth's center. We shall consider the 
correlation of the refractive index relative fluctuations at 
two points r

1
 = {z

1
, x

1
, y

1
} and r

2
 = {z

2
, x

2
, y

2
}. From the 

Refs. 6, 18, and 19 it follows that fluctuations of the 
refractive index are homogeneous in altitude and on sphere, 
that is, 
 

<ν(r1) ν(r2)> = B
ν
(R1 – R2, θ) , (5) 

 

where B
ν
 is the correlation function, 

R
j
 = ⏐r

j
⏐ = zj

2 + xj
2 + yj

2 is the distance from the Earth's 

center to the observation point rj , 

θ = arc cos [ cosθ1cosθ2cos (ϕ1
 – ϕ

2
) + sinθ1sinθ2 ] is the 

angle between the radius–vectors r1 and r2 , 

ϕ
j
 = arc tan (y

j
/x

j
) is the longitude, and 

θ
j
 = arc sin (z

j
/R

j
) is the latitude. Since horizontal scales of 

correlation are much less than the Earth's radius 
R

0
 ≈ 6 400 km, then the correlation function B

ν
 rapidly 

vanishes at small values of the angle θ. Therefore, in 
Eq. (5) we may assume that  
 

θ = (ϕ1 – ϕ2)
2 + (θ1 – θ2)

2 . (6) 
 

Taking also into account that the altitudes h considered 
here are much less than R

0
, the three–dimensional 

fluctuation spectrum of the refractive index Φ
ν
(κ

1
, κ

2
, κ

3
) 

can be represented as  
 

Φ
ν
(κ1, κ2, κ3) = (2π)–3 ⌡⌠

–∞

∞

 dz′ dx′ dy′ B
ν
 × 

× exp {– i [κ1 x′ + κ2 y′ + κ3 z′]} , (7) 
 

where x′ = R
1
 – R

2
 , z′ = R

0
(θ

1
 – θ

2
), and y′ = R

0
(ϕ

1
 – ϕ

2
). 

The correlation function B
ν
 is written in the form 

 

B
ν
 = ⌡⌠

–∞

∞

 dκ1 dκ2 dκ3 Φν
(κ1, κ2, κ3) × 

 

× exp [– i (κ1(R1 – R2) + κ2R0(ϕ1 – ϕ2) + κ3R0(θ1 – θ2))] . (8) 
 

A major part of spaceborne research of the turbulence 
microstructure is devoted to measurements of one–
dimensional vertical spectrum  
 

V(υ)
ν

(κ1) = ⌡⌠
–∞

∞

 dκ2 dκ3 Φν
(κ1, κ2, κ3)  (9) 

within spatial frequencies κmin = 2π⋅10–3 m–1 <~ 

<
~ κ1

 ≤ κ
max

 = 2π⋅10–1 m–1 (Refs. 6–10). It is established 

that this spectrum follows the power dependence on κ1 
 

V(υ)
ν

(κ1) ∼ κ μ1 , (10) 
 

where in the range of low spatial frequencies κ1 
<
~ κ0 (κ0 = 

= 2π / l
ν
* , l

ν
* ∼ 50 m) the index of power μ ≈ –3, and at 

κ1 > κ0 μ ≈ –5 (Ref. 6). Thus, the stratospheric spectrum of 

turbulence (10) differs considerably from the Kolmogorov–

–Obukhov one (V(υ)
ν

(κ1) ∼ κ1
–5/3) which is characteristic for 

troposphere. Among all spaceborne observations of the 
temperature field microstructure at altitudes 
20 km ≤ h ≤ 45 km up to the frequencies corresponding to 
spatial scales about 10 m, the Kolmogorov's frequency 
dependence of the spectrum has not been identified.6–10  

By analogy with Ref. 9 we represent the vertical 
spectrum of relative fluctuations of the refractive index as 
 

V(υ)
ν

(κ1) = 
C2

ν

(k2
m + k2

1)
3/2 (1 + k2

1 / k2
0)

 , (11) 

 

where in contrast to the spectrum model proposed in Ref. 9 
the wave number κm , characterizing the maximum vertical 

scale of discoid inhomogeneities, is introduced. In 
accordance with Eq. (10) κm < κmin and κm n κ0. 

Let us estimate the parameter κm and the integral 

vertical scale of the refractive index correlation 
 

Lm = ⌡⌠
0

∞

 dx′ B
ν
(x′) / σ2

ν
 , (12) 

 

where 
 

B
ν
(x′) = ⌡⌠

–∞

∞

 dκ1 V
(υ)
ν

(κ1) e
iκ1x′ (13) 

 

is the correlation function normalized to the mean square, 
and σ2

ν
 = B

ν
(0) is the relative variance of refractive index. 

Taking into account the condition κm n κ0 we can obtain 

from Eqs. (11)–(13)  
 

σ2
ν
 = 2 C 2

ν
 / k2

m (14) 
 

and 
 

Lm = π / (2κm) . (15) 
 

It follows from Eq. (3) that the variance σ2
ν
 = <ν2> is 

determined by the expression 
 

σ2
ν
 = σ2

T / <T>2 , (16) 
 

where σ2
T is the temperature variance. Eqs. (14) and (16) 

allow us to obtain 
 

κm = 2 Cν <T> / σT . (17) 
 

For <T> = 240 K, σ
T
 ∼ 1° (Ref. 20) and C

ν
 = 0.84 ⋅ 10–5m–1 

(Ref. 9) the wave number κm equals approximately 3 ⋅ 10–3m–1.  
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Whence, in accordance with Eq. (15), we have for the vertical 
scale of refractive index correlation the estimate Lm ∼ 0.5 km. 

Following Ref. 9, the three–dimensional spectrum Φ
ν
 

can be written in the form: 
 

Φ
ν
(κ1, κ2, κ3) = Φ(0)

ν
 ( )k2

1 + h2(k2
2 + k2

3)  , (18) 

 

where η is the parameter characterizing the spectrum 
anisotropy. For this spectrum a simple coupling exists 
between Φ(0)

ν
 and one–dimensional spectra: a vertical one, 

V(υ)
ν

(κ1), 
 

Φ(0)
ν
(κ1) = – 

η2

2π k1
 
d V(υ)

ν
(k1)

d k1
 , (19) 

 

and a horizontal one, for example,  

V 
ν

(h)(κ2) = ⌡⌠
–∞

∞

 dκ1dκ3Φν
 (κ1, κ2, κ3), 

 

Φ(0)
ν
(κ2 η) = 

– 1
2 πηk2

 
d V (h)

ν
(k2)

d k2
 . (20) 

 

On substitution of Eq. (11) into Eq. (19) we can 
obtain, taking into account (18), the formula for a three–
dimensional spectrum. With the use of formulas (11) and 
(18)–(20) one can find also an explicit form of the 

dependence of horizontal spectrum V 
ν

(h) on κ2. The 

experiment on the measurement of the horizontal spectrum 
of star scintillations has made it possible, using the fitting 
of theoretical and experimental dependences of the spectrum 
measured on κ2, to determine the numerical value of the 

anisotropy parameter η ≈ 160 (Ref. 9). 
Thus, the characteristic horizontal scales  

l h
* ∼ ηκ0

–1 ∼ 8 km and L h
* ∼ ηκm

–1 ∼ 160 km correspond to 

the characteristic vertical scales of refractive index 
inhomogeneities l m

*  ∼ κ0
–1 ∼ 50 m and L m

*  ∼ κm
–1 ∼ 1 km. 

 
RANDOM WANDERING OF LASER BEAMS IN THE 

STRATOSPHERE 

 
The main distortions of laser beams in the stratosphere 

are made by the large–scale inhomogeneities of the 
refractive index, whose size far exceed the radius of a 
propagating beam. Along with a regular refraction, these 
inhomogeneities cause the random deviations of a beam axis 
from the line–of–sight propagation as well as the random 
defocusing of a laser beam. The diffraction of a beam on 
these inhomogeneities can be neglected. Consider the 
random wandering of a beam in this section. 

Let the laser source be located in the stratosphere at 
an altitude h1 above the Earth's surface. The radiation, 

propagating along the path length L, is received in the 
plane perpendicular to the beam optical axis. Then we shall 
go from the coordinate system {z, x, y} to the coordinate 
system {z′, x′, y′} with the center, coinciding with the point 
of laser source location, and with the axis z′ directed along 
the beam optical axis. The relation between the coordinates 
of these systems is of the form: 

⎩⎪
⎨
⎪⎧

 

z = z′sina – x′cosa ,

x = R0 + h1 + x′sina + z′cosa ,

y = y′ ,

  (21) 

where α is the zenith angle. 
In view of the fact that the refractive index 

inhomogeneities are large–scale, the expression for the 
vector of laser beam centroid ρd in the observation plane 

{x′, y′} can be written in the form (approximation of 
geometric optics)21 
 

ρd(L) = ⌡⌠
0

L

 d z′(L – z′) [∇
ρ′
 n(z′, ρ′)]  

ρ′=ρd(z′)
 , (22) 

 

where ρ′ = {x′, y′}, ∇
ρ
= {∂/∂x′, ∂/∂y′}, ρd = {xd, yd}. The 

vector of laser beam centroid can be represented as a sum of 
regular drift of a beam from its geometric axis 

<ρd> = {<xd>, 0}, caused by the altitude variation of N
–

 

throughout the atmosphere, and the fluctuation component  

ρ
~
d = {x~d, y

~
d} (<ρ~d> = 0) due to the presence of turbulent 

inhomogeneities on the propagation path: 

ρd(L) = <ρd(L)> + ρ~d(L) . (23) 

 
Consider at first the vertical coordinate of a beam 

centroid which is defined according to Eq. (22) by the 
expression 
 

x
∼
d(L) = ⌡⌠

0

L

 dz′(L – z′) [ ]∂
∂x′ n

∼
(z′, x′, yd(z′))  

x′=xd(z′)
, (24) 

 

where n∼ = n – <n> are the refractive index fluctuations. 
Equation (24) can be simplified. Actually, even in the 
portion of a beam propagation path, where the main regular 
beam displacement <xd> occurs, the magnitude of <xd> is 

far less than the changes in height of beam propagation 
direction due to either the inclination of beam trajectory to 
the horizon or the atmospheric sphericity. It allows us to 
take x′ = 0 in Eq. (24) as well as yd = 0.  

In accordance with Eq. (2) n∼ =<N>ν and 
∂
∂x′ n

∼ =ν 

∂<N>
∂x′  + 

+ <N> 
∂ν
∂x′. Since the regular variations of the refractive index 

are smoother as compared to the random ones (H0κm . 1), 

then ν 
∂<N>
∂x′  n <N> 

∂ν
∂x′. Thus, for the vertical coordinate of 

the beam centroid we can write the following approximate 
formula: 
 

x∼d(L) = ⌡⌠
0

L

 d z′(L – z′) <N(z′, 0, 0)> 
∂ν(z′, 0, 0)

∂x′  . (25) 

 

Using Eqs. (25) and (5) the variance of vertical beam 

wandering σx
2 = < x∼d

2(L) > can be expressed in the form 
 

σ2
x = ⌡⌠ ⌡⌠ 

0

L

 d z′1 d z′2 (L – z′1) (L – z′2) [N
–

(R1) × 

× N
–

(R2)
∂2

∂x′1 ∂x′2
 B

ν
(R1 – R2, ϕ1 – ϕ2, θ1 – θ2)]

 

 x′1=x′2=0,

y′1=y′2=0

, (26) 

 

where, according to Eq. (21) 
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Rj = [(R0 + h1 + x′j sinα + z′j cosα)2 + (z′j sinα – x′j cosα)2]1/2 ; 

θj = arc sin [(z′j sinα – x′j cosα) / Rj] ; 

ϕj = arc tan [y′j / (R0 + h1 + x′j sinα + z′j cosα)],  (j = 1, 2) . 

 
The expression for the correlation function B

ν
 follows 

from Eqs. (8) and (18) after passing in Eq. (8) to new 
integration variables (κ1 = κcosθ, κ2 = κsinθcosϕ/η, 

κ3 = κsinθsinϕ/η) and integration over angular variables θ 

and ϕ in view of Eq. (19): 
 

B
ν
(R1 – R2, 0, θ1 – θ2) = 2 ⌡⌠

0

∞

 dκ V (υ)
ν
(k) cos [κ ⏐S⏐] , (27) 

 

where S = {R1 – R2, (θ1 – θ2)R0/η}. On substitution of 

Eq. (27) into Eq. (26) we obtain 
 

σ2
x = – 2⌡⌠

0

∞

 dκ κ2 V (υ)
ν
(k) ×  

×⌡⌠ ⌡⌠ 

0

L

dz1′ dz2′ (L – z1′) (L – z2′) N
–

(R1) N
–

(R2) × 

×
⎣
⎡

⎦
⎤∂⏐S⏐

∂x ′1
 
∂⏐S⏐
∂x ′2

 cos(k⏐S⏐) + 
∂2⏐S⏐
∂x ′1 ∂x′2

 
sin(k⏐S⏐)

k
 

x'1=x'2=0

.(28) 

 

Taking into account the condition 2R0H0 n R0 the 

following approximations may be used in Eq. (28): 
 

Rj ≈ R0 + z′j cosα + sin2α z′j
2/2R0 , 

θj ≈ z′j sinα/R0 , 

∂Rj/∂xj ≈ sinα , 

∂θj/∂xj ≈ – cosα/R0 . 
 

Thus, if we use in Eq. (28) the formula (11) for the 

vertical spectrum V(υ)
ν
(κ) and the formula (4) for N

–
(Rj), 

the problem on estimating the variance of vertical random 
wandering σx

2 amounts to the calculation of a three–fold 

integral. 
When the path length considerably exceeds the 

longitudinal (along the beam axis) scale of correlation of 
refractive index fluctuations, we can use an approximation 
of delta–correlation of these fluctuations along the 
propagation axis z′.1–4,21 At horizontal propagation of the 
beam in the stratosphere, as it was noted above, the 
correlation scale is about 160 km that is comparable with 
the path length L (or with the effective thickness of a 
homogeneous atmosphere in horizontal direction  

2R0H0 ∼ 280 km) . Therefore, the approximation of 

delta–correlation in Eq. (28) are inapplicable. However, as 
the analysis of Eq. (28) has shown, due to large values of 
the anisotropy coefficient (η ∼ 160), for horizontal or 
slightly elevated paths we can take in Eq. (28) η → ∞, i.e., 
we can use the approximation of a plane–layered (on a 
sphere) medium that simplifies essentially the calculations 
of σx

2. This approximation will slightly overestimate the 

values of σx
2. But the relative error of the use of the above 

approximation does not exceed 10%. 
As a result, for the case of horizontal and slightly 

elevated paths (|cosα| n 1) from Eq. (28) a more simple 
formula is derived: 
 

σ2
x = 2 N

–
 2(h1) L

4 ⌡⌠
0

∞

 dκ κ2 V(υ)
ν

(κ) ⏐J(κ)⏐2 , (29) 

where  
 

J(κ) = ⌡⌠
0

1

 dξ (1 – ξ) exp {– (A ξ2 + B ξ) (1 + i κ H0)} ;  (30) 

A = L2/(2R0H0) ;  B = cosα L/H0 . 

From Eq. (29) it follows that for the paths, whose 
length satisfies one of the conditions L . 1 / (κ0 ⏐cosα⏐) 

or L . 2R0 / k0 ∼ 10 km, a high–frequency range of the 

spectrum κ >~ κ0 does not affect practically the value of 

variance of beam random wandering σx
2. Therefore, after 

substituting Eq. (11) into Eq. (29) we can assume κ0
–1 = 0. 

As a result when substituting the integration variable 
κ = κmζ we have: 
 

σ2
x = 2 C2

ν
 N
–

 2(h1) L
4 ⌡⌠

0

∞

 
dζ ζ2

(1 + ζ2)3/2⏐J(κm ζ)⏐2 . (31) 

 

Let us consider the particular cases. When the beam 
perigee is in the source plane (α = 90°) or the condition 

⏐ cosα ⏐ n H0 / R0 is fulfilled, then for the path 

L . 2R0 / km from Eq. (31) we obtain the formula 
 

σ2
x = π C2

ν
 N
–

 2(h1) L
2 R0 / κm . (32) 

 

Assuming C
ν
 = 0.84 ⋅ 10–5, N

–
(h1 = 20 km) = 2 ⋅ 10–5, 

L = 500 km, R0 = 6 400 km, and κm = 2π ⋅ 10–3 m–1 , from 

Eq. (32) we estimate the value of σx = 4.74 m. 

It is of interest to compare the amplitude of random 
beam wandering with the value of regular beam drift from 
the line–of–sight propagation. Within the first 
approximation of geometric optics the average beam 
deflection <xd> for the path length L is determined by the 

formula obtained from Eq. (22)  

⏐<xd>⏐ = N
–

(h1) 
π R0

2 H0
 L . (33) 

 

Taking into account Eqs. (32) and (33) we obtain: 
 

σx / ⏐<xd>⏐ = C
ν
 2 H0 / km . (34) 

 

For C
ν
 = 0.84 ⋅ 10–5, H0 = 6 km, and κm = 2π ⋅ 10–3 m–1 

the ratio σx / ⏐< xd >⏐ ∼ 10
–2. Thus, the regular beam 

deflections are by two orders of magnitude more than the 
random ones. 

We consider the case of elevated paths when the 

condition H0 / R0 n ⏐cos α⏐ n 1 is fulfilled, and in 

Eq. (30) the atmospheric sphericity can be neglected 
(Aξ2 ≈ 0 ). In this case the internal integral in Eq. (30) can 
be calculated analytically. 

It is evident that in two cases only we can neglect the 
atmospheric sphericity, when zenith angle α < 90° (the beam 
perigee is lacking on the propagation path) at an arbitrary 

path length L, and for short paths, when L n R0H0 at an 

arbitrary angle α. At α < 90° and L . (κmcosα)–1 from 

Eq. (31) we can obtain the asymptotical formula 
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σ2
x = 2 C2

ν
 N
–

 2(h1) L
2 / (cos ακm)2 . (35) 

 

Comparing the magnitude of variance σx
2, when the 

condition ⏐cos α⏐ n H0 / R0 (Eq. (32)) is realized, with σx
2 

in the case when ⏐cos α⏐ . H0 / R0 (Eq. (35)), one can see 

that in the first case the variance of beam wandering is larger 

by  
π
2 R0κmcos2α times than in the second case. This quantity 

far exceeds the parameter κm H0 . 1. Such a large difference 

is explained by the fact that during beam propagation through 
a distorting layer of the atmosphere in the case of 

⏐cos α⏐ n H0 / R0 the turbulent inhomogeneities of 

refractive index are more extended along a beam axis than in 

the case of ⏐cos α⏐ . H0 / R0 due to their anisotropy. 

Note that formula (35) is valid also at α > 90° for the short 
path length L < H0 / ⏐cos α⏐ if the condition 

⏐cos α⏐κm L . 1 is fulfilled.  

Fig. 1 shows the results of calculating the path length 
dependence of ratio σx/σx0 at different zenith angles α. The 

parameter σx0
 is determined by asymptotical formula (32). For 

α = 90° (curve 3) with increasing L the ratio σx/σx0 is 

saturated to the level being equal to unity. The curve 1 
demonstrates that in the case of α = 87° the ratio σx/σx0 

rapidly tends to the level determined by the formula (35). 
Approximately up to the L = 120 km the curve 5 (α = 93°) 
coincides with the curve 1 (α = 87°) in view of fulfilment of 
the condition L < H0 / ⏐cos α⏐. With further increasing the 

path length L in the case of α = 93° the dipping a beam in a 
more dense layers of the atmosphere and increasing the 
longitudinal (along a beam axis) size of the turbulent 
inhomogeneities, crossed by a beam, as the path length 
approaches to the perigee point Lp = (h1 + R0)cosα, cause the 

significant increase of the amplitude of random wandering of a 
beam. Then , after passing the perigee point when the 
condition L. Lp is realized, the saturation of the ratio σx/σx0 

to the level σx/σx0
 = 2 exp [R0cos

2α/(4H0)] takes place. 

 

 
 

FIG. 1. The path–length dependence of ratio σx/σx0
 for 

κmH0 = 30, 2R0H0= 280 km. Curves 1–5 correspond to the 

zenith angles α being equal to 87°, 89°, 90°, 91°, and 93°, 
respectively. 

 

To calculate the variance of horizontal beam 

wandering σy
2 = < y∼d

2 >, one can use Eq. (26), substituting 

the derivatives with respect to yj for the derivatives with 

respect to xj . Using the same approach when deriving the 

formula for σx
2 , one can obtain: 

 

σ2
y = 2η–2 L4 N

–
 2(h1) ⌡⌠

0

∞

 dκ V(υ)
ν

(κ) κ ⌡⌠
0

j

 dκ′ ⏐J(κ′)⏐2 . (36) 

 

From Eq. (36) taking into account the condition 
κm H0 . 1, in particular cases, we have: 
 

σ2
y = 2η–2 C2

ν
 N
–

 2(h1) L
2 R0 k

–1
m  ln (2κm H0) , (37) 

 

when ⏐cos α⏐ n H0 / R0 and L . 2R0 / km ,  
 

and  
 

σ2
y = πη–2 C2

ν
 N
–

 2(h1) L
2 H0 (κm cos2α)–1 , (38) 

 

when ⏐cos α⏐ . H0 / R0. It follows from the comparison 

of Eq. (37) with (32) and (38) with (35), that in the first 
case the vertical beam displacements σx are larger than the 

horizontal ones σy by η / (2/π) ln(2km H0) times, and in 

the second case σx is larger than σy by η / (π/2) H0km 

times. The obtained above estimate σx = 4.75 m corresponds 

to the value of σy ≈ 0.05 m, if η = 160. 
 

MEAN INTENSITY 
 

In the case of extended paths the main distortions of 
laser beams in the stratosphere will occur in the layer, 
whose thickness, depending on the geometry of propagation, 
is far less than path length L. Therefore, for analysis of the 
beam intensity I(L, ρ) in the stratosphere we can use the 
phase–screen approximation.5 In this approximation the 
expression for intensity of the Gaussian beam I(L, ρ) can be 
written in a form 
 

I(L, ρ) = 

= I0 ( )
k

2π L

2

 ⌡⌠
–∞

∞

 d2
ρ′exp {– 1/(2a2)[1 – iΩ(1 – L/F)ρ′2 ] – 

– i(k/L) ρρ′ + i κ ⌡⌠
0

L

 dz′ n(z′, (1 – z′/ L)ρ′)} 
2

 
 ,  (39) 

 

where I0 is the intensity at the beam axis in the initial 

plane (z′ = 0), a is the effective beam radius, and F is the 
radius of phase–front curvature at the plane z′ = 0, 
Ω = ka2/L, k = 2π/λ, and λ is the wavelength. 

Consider the case of focused beam (L = F) that hold the 
greatest interest. Having regard to that refractive index 
inhomogeneities are large–scale, we can use in Eq. (39) the 
series expansion of n being limited to three terms of this series: 
n(z′, ρ) ≈ n(z′, 0) + ρΔ

ρ
n(z′, 0) + 1/2 (ρΔ

ρ
)2n(z′, 0). This 

results in 
 

I(L, ρ)= I0 ( )κ

2π L

2

⌡⌠ ⌡⌠ 

–∞

+∞

d2ρ1 d
2ρ2 exp { }– 

1

2 a2 (ρ
2
1 + ρ2

2)

× 
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× exp 

⎩
⎨
⎧

⎭
⎬
⎫ 

 

– 
iκ
L (ρ1 – ρ2) 

⎣
⎢
⎡

⎦
⎥
⎤

ρ – ⌡⌠
0

L

 dz′ (L – z′)∇
ρ
n(z′, 0)  × 

× exp 

⎩
⎨
⎧

⎭
⎬
⎫ 

 

iκ
2  ⌡⌠

0

L

 dz′( )1 – 
z′
L

2

 [(ρ1∇ρ
)2 – (ρ2∇ρ

)2] n(z′, 0) . 

 (40) 
 

In Eq. (40) the second term in square brackets of the second 
exponent is the radius–vector of displacements of a beam 
centroid which are caused by regular and random refraction 
of a beam. The last exponent in (40) describes the 
defocusing of a beam. 

Based on Eq. (40) we calculate the mean intensity 
< I > = < I(L, ρd) > which is a result of ensemble–

averaging of instantaneous intensity at a point of the beam 
centroid ρd . Assuming that refractive index fluctuations in 

the last exponent of (40) adhere to the Gaussian law of 
probability and neglecting the horizontal beam defocusing 
(along y′ axis), we obtain 
 

<I> = I0 Ω 
k

2π L ⌡⌠ ⌡⌠ 

–∞

+∞

dx1 dx2 × 

 

×exp

⎩
⎨
⎧

⎭
⎬
⎫ 

 

– 
x2

1 + x2
2

2 a2  + i 
κ

2 <G> (x2
1 – x2

2) – 
κ
2

8  σ2
G (x2

1 – x2
2)

2 ,  (41) 

 

where 
 

G = ⌡⌠
0

L

 d z′ ( )1 – 
z′
L

2

 
∂2n(z′, 0)

∂x2  (42) 

 

is the parameter characterizing the defocusing of a beam 
along the x′ axis (phase–front curvature of a plane wave 
in its passage through the equivalent phase screen),  
σG

2 = < G2 > – < G >2. After passing in Eq. (41) to the new 

integration variables X = (x1 + x2)/2 and x = x1 – x2 and 

integration over X we obtain 
 

<I> = ID K , (43) 
 

where ID = I0Ω
2 is the intensity of focused beam when 

propagated in homogeneous medium; 
 

K = 
2

π
 
⌡
⌠

0

∞

 

 
 

dx exp 
⎩
⎨
⎧

⎭
⎬
⎫

– ξ2

⎣
⎡

⎦
⎤1 + 

γ2

1 + 2β2 ξ2

1 + 2β2 ξ2
 (44) 

 

is the factor of turbulent decrease of intensity, γ = Ω<G>L 
and β = ΩσGL are the parameters characterizing the laser 

beam regular defocusing and random one, respectively. At 
β ≈ 0 the factor K is equal to (1 + γ2)–1/2. If γ ≈ 0, then  
 

K = 1 – β2/2 at β n 1 and K = 
2
π 

ln(2β)
β  at β . 1. 

For the variance σG
2  , using Eqs. (42), (2), (5), and (6) 

one can write the expression 
 

σG
2  = ⌡⌠ ⌡⌠ 

0

L

 d z1 d z2 ⎝
⎛

⎠
⎞1 – 

z1

L

2

 ⎝
⎛

⎠
⎞1 – 

z2

L

2

 N
–

(R1) N
–

(R2) × 

× 
∂4

∂x2
1 ∂x

2
2

B
ν
(R1 – R2, ϕ1 – ϕ2, θ1 – θ2)

 

 

 
x1=x2=0,

y1=y2=0

 . (45) 

 

Performing the calculations analogous to those made when 
deriving the formula for σx

2 , for σG
2 from Eq. (45) we obtain 

 

σG
2  = 2 N

–
 2(h1) ⌡⌠

0

∞

 dκ κ4 V(υ)
ν

(κ) ⏐J
∼
(κ)⏐2 , (46) 

 

where 
 

J
∼
(κ) = ⌡⌠

0

1

 dξ (1 – ξ)2 exp {– (A ξ2 + B ξ) (1 + i κ H0)} . (47) 

 

The analysis of Eq. (46) with the use of Eq. (11) for 

the spectrum V(υ)
ν
(κ) has shown that in contrast to random 

displacements of a beam, where the main contribution is 
made by inhomogeneities of the refractive index with scales 
about κm

–1 , the random beam defocusing is primarily 

determined by the inhomogeneities whose dimensions are 
about κ0

–1 . In this case for the estimates σG
2  in the formula 

for V(υ)
ν

(κ) one can assume that κm = 0. As a result, from 

Eqs. (46) and (11) we obtain 
 

σG
2  = 2 N

–2(h1) L
2 C2

ν
 k2

0 ⌡⌠
0

∞

 dζ ζ (1 + ζ2)–1 ⏐J
∼
(κζ)⏐2 . (48) 

 

Provided that ⏐cosα⏐ n H0/R0 and L . 2R0k0 

from Eq. (48) we have 
 

σG
2  = 

1
2 π

2 N
–

 2(h1) C
2
ν
 R0 κ0 . (49) 

 

At zenith angles α < 90°° and if ⏐cosα⏐ . H0/R0 and 

L . (⏐cosα⏐κ0)
–1 Eq. (48) transforms to the following 

expression: 
 

σG
2  = 2 N

–
 2(h1) C

2
ν
 ln(κ0 H0) / cos2α . (50) 

 
This formula is also valid at α > 90° if the path lengths are 
relatively short: L < H0/⏐cosα⏐. 

Let us estimate the ratio γ2/β2 ≡ < G >2/σG
2  for 

extended (L > 2R0/H0) horizontal (⏐cosα⏐ n H0/R0) 

propagation paths, using the approximation 
 

<G> = 
π

2  
N
–

(h1)

H0
 2 R0 / H0 , (51) 

 

which is obtained as a result of averaging Eq. (42) with the 
use of Eq. (4). For H0 = 6 km, C

ν
 = 0.84 ⋅ 10–5 m–1 , and 

κ0 = 2π/50 m–1 from Eqs. (49) and (51) we have estimate 

γ2/β2 ≈ 0.16. Therefore, in this case the decrease of 
intensity is caused mainly by a beam defocusing due to 
random inhomogeneities of the refractive index, so that 
when calculating the mean intensity we can neglect regular 
refraction putting γ ≈ 0 in Eq. (44). 
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In Fig. 2 the results of calculating the on–axis 
intensity of the focused beam as a function of the zenith 
angle at different values of the Fresnel ratio Ω are plotted. 
It is seen that the main variations of mean intensity due to 
stratospheric turbulence occur in the range α ∼ 90°. For 
α < 89° we can neglect these variations. The more is the 
parameter Ω the more is the decrease of beam on–axis 
intensity as compared to that in a homogeneous medium. 

For Ω <∼ 1 the discoid inhomogeneities of the refractive 

index do not practically affect the beam intensity. 
 

 
FIG. 2. The factor of intensity decrease < I >/ID as a 

function of zenith angle α for h1 = 20 km, N
–

 = 2⋅10–5, 

C
ν
 = 0.84⋅10–5 m–1 , and κ0 = 2π/50 m–1. Curves 1 and 2 

correspond to the parameter Ω = 1. Curves 3 and 4 
correspond to Ω = 10. Curves 1 and 3 are calculated for 
L = 500 km, curves 2 and 4 are calculated for 
L = 1000 km. 

 

At h1 = 20 km, L > 2R0H0 ∼ 280 km, and α = 93° 
the point of perigee of a beam trajectory will be located at 
the lower line of the stratosphere (Lp ≈ 11 km), where 

along with discoids the small–scale Kolmogorov turbulence 
exists. The estimates of mean intensity, based on the model 
for C n

2 (Ref. 22) at the altitudes from 11 to 20 km, show 

that the influence of the small–scale Kolmogorov 
turbulence for such a path (h1 = 20 km, α = 93°) is greater 
than the discoid influence. 

 
CONCLUSION 

 
1. Based on the vertical spectrum of refractive index 

fluctuations generalized to the entire range of spatial 
frequencies (0 ≤ κ1 ≤ ∞) we have obtained the formulas for 

variances of the transverse random displacements σx
2 and σy

2 

and for variance of the phase–front curvature σG
2 of a beam. It 

is shown that the variance of the vertical wandering σx
2 is 

determined mainly by the large–scale refractive index 
inhomogeneities with the size of the order ∼ κm

–1 and the 

variance σG
2 is determined by inhomogeneities of the size of 

 ∼ κ 0
–1 . Both σx

2 and σG
2 significantly depend on the zenith 

angle of the propagation direction due to strong anisotropy of 
the refractive index fluctuations as well as the sphericity of 
the atmosphere. 

2. The amplitude of vertical random wandering of a 
beam σx on the one hand is by two orders of magnitude less 

than that caused by regular refraction < xd >, and on the 

other hand it is approximately by two orders of magnitude 
more than the amplitude of horizontal random 
displacements of a beam σy. 

3. Along the extended paths (L > 500 km) the 
broadening of a focused beam, caused by random 
inhomogeneities, is more essential than that induced by 
regular variations of refractive index in the stratosphere. 
The on–axis intensity of a focused beam therewith is at 
least half as that in a homogeneous medium, if the 

conditions α >∼ 90°° and Ω >∼ 10 are fulfilled. 
 

REFERENCES 
 

1. V.I. Tatarskii, Wave Propagation in the Turbulent 
Atmosphere (Nauka, Moscow, 1967), 548 pp. 
2. A.S. Gurvich, A.I. Kon, V.L. Mironov, and 
S.S. Khmelevtsov, Laser Radiation in the Turbulent 
Atmosphere (Nauka, Moscow, 1976), 277 pp. 
3. V.L. Mironov, Laser Beam Propagation in the 
Turbulent Atmosphere (Nauka, Novosibirsk, 1981), 
246 pp. 
4. V.E. Zuev, V.A. Banakh, and V.V. Pokasov, Optics of 
the Turbulent Atmosphere (Gidrometeoizdat, Leningrad, 
1988), 270 pp. 
5. V.A. Banakh and I.N. Smalikho, Atmos. Oceanic 
Opt. 6, No 4, 233–237 (1993). 
6. A.P. Aleksandrov, et al., "Temperature field structure 
in the stratosphere," Preprint No. 2, Institute of 
Atmospheric Physics of the Academy of Sciences of the 
USSR, Moscow (1989). 
7. A.S. Gurvich and V. Kan, Atm. Opt. 2, No. 4, 277–
281 (1989). 
8. A.P. Aleksandrov, et al., Izv. Akad. Nauk SSSR, Fiz. 
Atmos. Oceana 26, No. 1, 5–16 (1990). 
9. A.A. Volkov, et al., Atm. Opt. 3, No. 8, 806–811 
(1990). 
10. G.M. Grechko, et al., Adv. Space Res. 12, No. 10, 
169–175 (1992). 
11. M.A Kolosov and A.V. Shabel'nikov, Refraction of 
Electromagnetic Waves in the Atmospheres of Earth, 
Venera, and Mars (Sov. radio, Moscow, 1976), 219 pp. 
12. J.L. Lumley and H.A. Panofsky, The Structure of 
Atmospheric Turbulence (Interscience, N.Y., 1964). 
13. A.S. Monin and A.M. Yaglom, Statistical Fluid 
Mechanics (MIT Press, Cambridge, 1971), Part II. 
14. N.K. Vinnichenko, N.Z. Pinus, S.M. Shmeter, and 
G.N. Shur, Turbulence in the Free Atmosphere 
(Gidrometeoizdat, Leningrad, 1976), 289 pp. 
15. G.M. Grechko, A.S. Gurvich, and Yu.V. Romanenko, 
Izv. Akad. Nauk SSSR, Fiz. Atmos. Oceana 16, No. 4, 
339–344 (1980). 
16. R.E. Good, et al., in: Handbook for MAP, ed. 
S.A. Bowhill and B. Edvards (University of Illinois, 
1987), pp. 111–117. 
17. F. Dalandier and J. Sidic, J. Atmos. Sci. 44, No. 20, 
3121 (1987). 
18. A.S. Gurvich, Izv. Vyssh. Uchebn. Zaved. SSSR, Ser. 
Radiofiz. 27, No. 8, 951–959 (1984). 
19. A.S. Gurvich, Atm. Opt. 2, No. 3, 188–193 (1989). 
20. V.E.Zuev and V.S. Komarov, Statistical Models of 
Temperature and Gaseous Constituents of the 
Atmosphere (Gidrometeoizdat, Leningrad, 1986), 264 pp. 
21. S.M. Rytov, Yu.A. Kravtsov, and V.I. Tatarskii, 
Introduction to Statistical Radiophysics. Part II 
(Nauka, Moscow, 1978), 463 pp. 
22. A.S. Gurvich and M.E. Gracheva, Izv. Akad. Nauk 
SSSR, Fiz. Atmos. Oceana 16, No. 10, 1107–1111 (1980). 


