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In this paper we derive expressions which show that, from the point of view of 
reaching minimum in the rms error of phase estimate, the spatial distribution of 
sounding signal in the target plane as a finite function different from zero only within 
the target contour is optimal. This situation allows further development of the 
technique of active image reconstruction and stimulates euristic approach to synthesis 
of reconstruction algorithms in contrast to regular one since it does not impose any 
restrictions on sounding signals. 

 

In Refs. 1 and 2 one can find a description of the 
technique proposed for reconstruction of a target image 
under conditions of phase distortions of spatial spectrum 
of a signal. This technique uses orthogonal spatiotemporal 
distributions of a sounding pulse over the transmitting 
aperture. It is characteristic of this technique that no 
source of reference emission in the target plane is needed. 

In this connection it is important to know whether 
there exists or not some optimal distribution of the 
sounding signal, independent of the plane in which we 
consider it, either in the image plane of the target or in 
the plane of the transmitting aperture, because they are 
uniquely related to each other via the integral expression 
for Fraunhofer (Fresnel) diffraction. It is also important 
to elucidate how the solution derived in Refs. 1 and 2 
relates to the optimal solution, provided that such a 
solution is found. 

Taking the Fraunhofer model of diffraction, for 
certain, below we shall seek such a spatial distribution of 
the sounding signal in the target plane, which bring the 
highest value to a chosen quality index. After the target 
is irradiated, the signal in its plane may be presented in 
the following factorized form: 

 

Ec(r)
 
= Es(r) E(r), (1) 

 
where r is the spatial coordinate in the target plane, Es(r) is 

the sounding signal; and E(r) is the target image to be 
reconstructed. 

However, one has first to choose a criterion of 
optimum. Since we aim at compensating for the destructive 
effect of phase distortions of the spatial spectrum of a signal 
while reconstructing the image, it appears to be reasonable 
to choose the rms error (σ 2

ϕn
) of the estimate of phase 

distortions of the spatial spectrum of a signal as a criterion 
of quality. 

Thus, a <good> modulating function, in the above 
sense, would be the function, which would permit the 
estimation of phase perturbations in the propagation 
medium to the highest accuracy. Therefore one needs to 
consider the synthesis of algorithms for optimal 
estimation of phase perturbations, which most often are 
introduced by the propagation medium itself. 

Consider the functional of probability density for a 
field observed against a δ – correlated additive noise3

 

 

F(ε(ρ, t) / A0, ϕ) = K
ϕ
 exp (– 

1
2 N0
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0
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 ⌡⌠
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 dρ d t ε2(ρ, t) – 

– q0 A
2
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A0

N0
 Re ⌡⌠

Ω

 dρ ε*0(ρ) ε(ρ) e
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where  
 

q0

 
= 

T
4 N0

 ⌡⌠
Ω

 dρ ⏐ε(ρ)⏐2; (3) 

 

ε0(ρ)
 
= ⌡⌠

0

T

 dt ε(ρ, t) e
jω0t; (4) 

 

εc(ρ, t)
 
= Re (A0 ε(ρ) exp (j (ϕ(ρ) – ω0))); (5) 

 

ε(ρ, t)
 
= εc(ρ, t) + n(ρ, t); (6) 

 
ρ is the spatial coordinate in the aperture plane; T is the 
time interval of observation; Ω is the integration domain in 
the aperture plane; ω0 is carrier frequency; A0 is the 

amplitude of the detected signal, which, in the general case 
is indeterminate; and, N0 is related to n(ρ, t) via the 

following relationship: 

<n(ρ1,
 
t1) n(ρ2, t2)> = N0 δ(ρ1 – ρ2) δ(t1 – t2). (7) 

 
As foolows from Ref. 3, further investigations into the 
algorithms for estimation of the parameters of targets 
located under conditions of phase distortions introduced by 
a medium mainly used two approximations of the function 
describing the distortions. The first class of approximating 
functions is as follows: 
 

ϕ(ρ) = ∑
l=1

L

 ϕl χl (ρ – ρl), (8) 

 
where ϕl may be arbitrary, and 

 

χl (ρ – ρl)
 
=
 ⎩
⎨
⎧ 1, ∀ ρ ∈ Δr,

0, ∀ ρ ∉ Δr;
 (9) 

 
while the second class is described by the equality 
 

ϕ(ρ) = ∑
l=1

L

 (ϕl – κl (ρ – ρl)) χl (ρ – ρl), (10) 
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where
 
κl is an arbitrary vector; ρl is the radius-vector of the 

correlation cell Δl . The whole domain of definition of the 

function ϕ(ρ) is divided into L subregions Δl . 

Use of such approximations is aimed at elimination of 
an explicit dependence of the phase distortions (estimated in 
the course of implementation of the adaptive Bayes 
algorithms) on the integrand parameter ρ. Thus the 
estimation of a continuous distribution ϕ(ρ) is reduced to 
estimation of a finite-dimensional vector {ϕl}, l = 1,..., L, 

according to the expression: 

∇
ϕ
 ln F(ε(ρ, t) /

 
A0, ϕ)

 
= 0, (11) 

which, in the case of approximation (8) is reduced to the form 

∂
∂ϕ 

l

 Re ∑
l=1

L

 
 
exp (j ϕ 

l
) ⌡⌠

Δl

 dρ ε*0(ρ) ε(ρ) = 0, (12) 

 

which yields the following estimation algorithm: 

ϕ
Ð

l =
 
– arg ⌡⌠

Δl

 dρ ε*0(ρ) ε(ρ) ± 2π n , (13) 

n
 
=
 
0; ± 1; ± 2; ... ;  l = 1, ... , L. 

Meanwhile, from the standpoint of synthesizing 
adaptive algorithms, the class of functions used to 
approximate phase distortions is indecisive since variational 
calculus enables one to find an extremum of the functional 
(2) by directly varying function to be estimated. In this 
case the following expression corresponds to Eq. (11): 
 

δ
δ ϕ(ρ)

 ln F(ε(ρ′, t) /
 
A0, ϕ(ρ′)) = 0. (14) 

 

Following the rules of variational calculus (see, for 
example, Ref. 4), we obtain from Eqs. (14) and (2): 
 

δ
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A0, ϕ(ρ′)) = 

=
 A0

N0
 Re ⌡⌠

Ω

 dρ′ 
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N0
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It follows from Eq.
 
(15) that 

ϕ
Ð

(ρ)
 
= arg ε*0(ρ) ε(ρ) ± 2π n , (16) 

n
 
= 0; ± 1; ± 2; ... ;  l =

 
1, ... , L. 

By comparing Eqs. (13) and (16) one can see that 
expression (16) is a limit of the expression (13) under 
condition that Δl vanishes. Really, by multiplying both 

sides of Eq. (12) by the factor 1/Sl, where Sl = ⌡⌠
Δl

 dρ is the 

area of a Δl subregion, we have 

∂
∂ϕl

 Re ∑
l=1

L

 
1
Sl

 exp (j ϕl) ⌡⌠
Δl

 dρ ε*0(ρ) ε(ρ) = 0. (17) 

 

Differentiating it and making use of the mean value 
theorem,5 we have 

Re 
1
Sl

 j ε*0(ρ′l) ε(ρ′l) e
jϕ(ρ′

0
)
 ⌡⌠
Δl

 dρ = 0, (18) 

 

where ρ′l∈Δl. Then, in the limiting case of vanishing Δl we 

have 

lim
Sl→0

 
Re 

1
Sl

 j ε*0(ρ′l) ε(ρ′l) e
jϕ(ρ′

0
)
 ⌡⌠
Δl

 dρ = 

= 
A0

N0
 Re j ε*0(ρ) ε(ρ) e

jϕ(ρ) =
 
0, (19) 

which exactly coincides with Eq. (15), since ρ′l → ρ at Δl → 0. 

Thus the approximations (8) and (10) are not principle 
limitations on the synthesis of optimal processing schemes, 
representing only the way following which the phase 
distortions are written in a discrete form. However, no 
discrete form of this function is urgently needed when 
performing thus synthisized algorithms on an analog device. 

The meaning of the optimal scheme for estimating 
phase distortions directly follows from Eq. (16), and it is in 
calculation of the phase difference between the received 
field and the field from a known source in the absence of 
phase distortions. 

Let us now find such a distribution Es(r), which would 

make the estimation algorithm (16) most accurate. 
We define the limiting accuracy of estimating the 

phase distortions using the functional analog of the Fischer 
matrix, that is, a limiting transition to continuum 

 

–
 
< 

δ2 ln F(ε(ρ, t) / A0, ϕ)

δ ϕ(ρ′) δ ϕ(ρ′′)  > .
 
  (20) 

 

By differentiating Eq. (2) we obtain 
δ2 ln F(ε(ρ, t) / A0, ϕ)

δ ϕ(ρ′) δ ϕ(ρ′′)  
=  

=
 

A0

N0
 Re(j)2 ε*0(ρ′) δ (ρ′ – ρ′′) ε(ρ′) ejϕ(ρ′) . (21) 

Let now integrate Eq. (21) over the aperture. The 
assumption on spatial ergodicity of the random field ϕ(ρ) 
makes this procedure statistically equivalent to averaging 
over ensemble at a high angular resolution, i. e, to the case 
when the aperture is much larger than the interval of phase 
fluctuations. The limiting accuracy then takes the form 

σ–2
ϕ

 = 
A0

N0
 Re ⌡⌠

Ω

 dρ ε*0(ρ) ε(ρ) e
jϕ(ρ) . (22) 

Taking into account the mathematical model assumed 

εc(ρ) 
= ejϕ(ρ) ⌡⌠

Ω0

 dr Es(r) E(r) ej (k/R)r ρ , (23) 

which, in fact, is the Frauhnhofer approximation written 

assuming the presence of a thin phase screen, we obtain from 

Eq. (22) 

σ–2
ϕ

 = 

A0

N0
 Re ⌡⌠

Ω

 dρ ε*0(ρ) ejϕ(ρ) 
⌡⌠
Ω0

 d r Es(r) E(r) ej (k/R)r ρ . (24) 

Here k
 
is the wave number, and R is the distance between 

the aperture plane and the target plane. 
As follows from Eq. (24), the limiting accuracy is 

linear with respect to the variable function Es(r). Hence the 
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question on its best form may only be considered for the 
case when there are some nonlinear, for example, energy 
limitations, 

 

⌡⌠
Ω0

 dr
 
Es(r) E(r) E*s(r) E*(r) = E0 , (25) 

 

where
 
E0 is the energy in the target plane. Then, following 

the Lagrange factor technique5, we may construct an 
auxiliary functional 
 

Φ(Es(r)) = 

A0

N0
 Re
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+
 
λ(⌡⌠

Ω0

 dr ⏐Es(r) E(r)⏐2 – E0), (26) 

 

where λ is the Lagrange factor. By differentiating Eq. (26) 
with respect to |Es(r)| and arg Es(r), we obtain: 

δ Φ(Es(r))
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=  
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Solving Eqs. (27) and (28) with respect to |Es(r)| and 

arg Es(r), we have 

 

argEs opt(r)=– arg E(r)–arg⌡⌠
Ω

 dρ ε*0(ρ) ejϕ(ρ)
 e

j(k/R)r ρ
+2πn, (29) 

⏐Es opt(r)⏐= – 

A0

N0
 

1
2 λ 

1
⏐E(r)⏐ ⌡⌠

Ω

 dr ε*0(r) e
jϕ(ρ)

 e
j(k/R)r ρ

, (30) 

n = 0; ± 1; ± 2; ... ;  l = 1, ... , L. 
 

By substituting Eq. (30) into limitation (25) we have 
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from which it follows that 
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Note from a comparison of Eqs. (30) and (32), that 
only the solution corresponding to λ < 0 is valid because of 
the physical condition that |Es(r)| > 0. Then the final 

expression is 
 

⏐Es opt(r)⏐=
E0

⏐E(r)⏐
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 dρ ε*0(ρ) e
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 e
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.  (33) 

 
Since the obtained functional is quadratic, one can show 
that thus derived solution is just the solution we have 
initially sought. 

Let now the integration be carried out over infinite 
planes, and ε0(ρ) be the ideal estimate of the signal spectrum, 

multiplied by phase distortions introduced by the medium. It 
is obvious that in this case we have from Eq. (33) 

 

⏐Es opt(r)⏐
 
= const, (34) 

since
 
 

lim
Ω0→∞

Ω →∞

N0→∞

 ⌡⌠
Ω0

 dρ ⌡⌠
Ω

 dρ ε*0(ρ) e
jϕ(ρ)

 e
j(k/R)r ρ 2

 ∼ E0 , (35) 

lim
Ω0→∞

Ω →∞

N0→∞

 ⌡⌠
Ω

 dρ ε*0(ρ) e
jϕ(ρ) e

j(k/R)r ρ
 = E(r). (36) 

 
Thus it is shown that the view of a sounding signal in the 
target plane does not play a decisive role in the problem of 
attainment of the highest accuracy of phase distortions 
estimation, since no a priori assumptions on the target 
image E(r) are needed, and it is only desirable, naturally, 
the signal to be concentrated in the area occupied by the 
target itself. As a consequence, we may state that the 
technique of estimating (compensating for) the phase 
distortions introduced by a turbulent medium proposed in 
Refs. 1 and 2 provides maximum accuracy of such estimates 
and can be successfully used in problems on reconstructing 
images distorted by a turbulent medium. 

However, since the algorithm of active reconstruction 
appears to be not optimal because the sounding signal is 
scattered in the regions outside the target, it is worthwhile 
to consider the <energy crisis> noted in this paper and the 
ways to overcome it. 
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