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In this paper we present a version of the small–angle approximation of the 
spherical harmonics method for solving the radiation transfer equation in vector form. 
The approach we propose in this paper allows analytical simple description of the main 
effects accompanying the propagation of a polarized radiation through turbid media. 
The accuracy of this technique is estimated, and it is compared with that of the exact 
solutions of the radiation transfer equation. 
 

All the information available from optical remote 
sensing of natural formations is in the spatial-angular and 
spectral distributions of the characteristics of polarization 
of radiation reflected and scattered by such formations.1 
Following the photometric (ray) description of radiation 
its state of polarization is defined by a four-dimensional 
vector. The components of such a vector are the 
coefficients of the coherence matrix representation in a 
corresponding basis.1 Most often used representation1 is 
the so-called SP-representation of polarization (i.e., 
Stokes polarization) via four easily measurable parameters 
L = {I,Q,U,V}. Within the geometric optics 
approximation the transformation of polarized radiation 
by a medium is found from the corresponding boundary–
value problem formulated for the vector equation of 
radiation transfer (VERT).2,3 

The difficulties of solving VERT are well-known4: 
even with the state-of-the-art numerical algorithms and 
all the computer power available, solution of polarization 
problems requires many hours of computations. Solution 
of this problem for the case of real media is more 
complicated owing the angular anisotropy of scattering 
(i.e., matrices of the aerosol type). As in the scalar case, 
the small-angle approximation was also developed for this 
case.5–7 However, the results obtained describe extinction 
of the components of vector-parameter in the medium, but 
neither yield their mutual transformations, nor (that is 
particularly important for the tasks of optical sensing) 
describe the generation of one or another state of 
polarization in the medium. Such techniques were 
developed in their vector version on the basis of the 
scalar small-angle approximation8,9 that follows from the 
more general form.10 In this paper we propose further 
development of the ideas of small-angle approximation10 
as applied to solving VERT. 

Among the tasks of passive remote sensing those, in 
which the sensed volume is strongly extended along one 
of its dimensions, are of most practical interest. The cases 
of natural illumination of the Earth's surface, limited 
atmospheric or sea layers, etc. fall in this category. To 
describe mathematically radiation transfer in such media, 
we use the model of a plane-parallel turbid layer. 
Decomposition of the relevant boundary problems shows3 
that the general boundary–value problem is then reduced 
to solution of VERT for a turbid medium layer with a 
plane wave of arbitrarily polarized light incident upon it 
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Further, τ  is the current optical depth; τ
0
 is the optical 

thickness of the layer. Incident radiation is characterized by its 
vector-parameter L

0
. 

Approximation10 is constructed in its scalar version 
based on the small-angle modification of the technique of 
spherical harmonics (SH). The severity of using SH in the 
vector case, as well as of solving the boundary–value  
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problem, in general, is due to the form of the matrix of 

local transformation S
↔

. For a preset x
↔

 (cos γ), the latter 

depends, in its turn, on the form of the rotator R
↔

. The form 
of the rotator matrix depends on the form of presentation of 
the radiation polarization. A particularly simple (diagonal) 

form of R
↔

 is reached in the case when the matrix of 
coherence is expanded into the circular basis (that is, in the 
case of CP presentation (circular polarization))3,11 
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where T
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 is the matrix of transition; i is the imaginary unit. 

However, such a transition also transforms the 
scattering phase matrix 
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so that, in agreement with Eq. (4), we have for the case of 
aerosol scattering12  
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To convert to the system of equations corresponding to the SH 
technique,11,13 we introduce generalized spherical coordinates 
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 (μ) are the generalized Legendre polynomials,14 

s = ±0, ±2. 
For the generalized polynomials, the following 

recursion formulas are valid14 
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as well as the theorem of summation 
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and the orthogonality relationship14 
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The upper bar denotes complex conjugation. 
Let us present all the functions entering into Eq. (1) 

in the form of series expansions over generalized spherical 
functions. 
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Substitute now the expansions (11) into the equation 

(1), multiply both its sides by Y
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 (μ) e–imϕ, and integrate 

over the total solid angle dl̂. Then, accounting for 

expressions (6)–(10) we obtain for Y
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coupled differential equations of the SH technique in its 
application to VERT: 
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The difference of the obtained SH system from that 
developed in Ref. 13 is that the axis of its system of 
coordinates for the unit vectors of directions in space  
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follows l
∧

0
 (see expression (12)), while in Ref. 13 the axis ẑ 

was taken for such a direction.  
In its scalar case10 the small–angle modification of the 

SH technique (SASH) is based on the possibility of 
approximating the coefficients of the Legendre polynomial 
expansion of the brightness body by a monotonic slowly 
diminishing function of the running number in the 
expansion. Then the dependence of such coefficients on the 
running number may be expanded into a series, and keeping 
only first two terms in the SH system after the substitution, 
one may reduce such a system of equations to a single 
differential equation. Such an approximation is based on a 
sharply anisotropic shape of the brightness body which 
follows from the particular features of the Green's function 
solution of the equation of radiation transfer.15 

Consider the boundary conditions for the problem (1) 
in more detail. In case of CP representation of the incident 
radiation of brightness L, polarization p, ellipticity 
q (Ref. 1), one may recall expression (3) and write for a 
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As is seen from Eq. (14), all quantities  
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due to scattering. However, at small values of τ, when first 
orders of scattering dominate and aerosol backscattering can 

be neglected, the dependence of f
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k
 on k is bound to be a 

slowly monotonically decreasing function. Thus, it becomes 

possible to introduce a continuous dependence of the fm (k) 
coefficients on the number k, similar to that in the scalar 
case. It is further seen from Eq. (14) that the azimuthal 
part only contains m = 0, ±2, ... , that is, k . m. Assume 
that such a relation also holds for τ = 0. We expand fm(k) 
into the Tailor series: 
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Since we have neglected aerosol backscattering in the 
boundary conditions, we have for them in SASH approach 
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The solution of the matrix differential equation (16) 
under the boundary conditions (17) for a homogeneous with 
depth turbid medium is16 
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where the symbol v denotes the matrix of cofactors to a 
given matrix, and ζ

i 
are solutions of the characteristic 
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Just the expression (18) is the solution to VERT 
sought obtained within the small–angle modification of the 

SH technique. It is easy to see that in this approximation f
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is the coefficient of expansion of the matrix Green's 
function for plane layer of a turbid medium (with the 
transfer matrix from Ref. 1). 

The properties of the transfer matrix (21) are 
determined by the roots of the characteristic equation, 

dependent, in their turn, on the matrix x↔
k
. From the 

expansion (11) and formula (5) we have 
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Because of a strong anisotropy of the scattering phase 
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In order to use these expressions in computations, 

one needs to have an expansion of x↔ (l
∧

, l
∧

′) over the 
generalized spherical functions. These problems were 
considered by several authors (see, for example, Ref. 17), 
who gave the computational algorithms and presented 
examples of such expansions. However, the principal 
SASH assumption, formulated above on the slowly 
monotonically decreasing coefficients of the series 
expansion of the vector-parameter of polarization and the 
neglect of backscattering impose certain restrictions on 
the nature of scattering phase matrix. Since 
characteristics of scattered radiation are mainly described 
by the scattering phase matrix15 in the case of a plane–

parallel scattering layer, the dependence of x↔
k
 on k is 

bound to be a slowly monotonically decreasing function 
too. However, as it follows from results, obtained in 
Ref. 17, this restriction is not so strict for aerosol media 

though the k–behavior of the x↔
k
 matrix should be 

smoothed. 
As in the scalar case, it is quite convenient for 

making computations to approximate an arbitrary 
scattering phase matrix by a linear combination of 
matrices in a small–angle approximation written using 
Henji–Greenstein function18 
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m
, and Q

m
 are the maximum values of 

the degree of linear and circular polarizations of single 
scattered radiation. Simple analytical expressions for 
coefficients of a Henji–Greenstein scattering phase matrix 
(see Eq. (22)) can be found in Ref. 18. 

Non-trivial character of SASH transformations 
complicates analytical estimation of the accuracy of 
obtained approximate solution. Most efficient way of doing 
such an estimation is to compare the approximate solution 
to the exact numerical or analytical solution for VERT. 
Figure 1 shows the above obtained solution in comparison 
with the analytical one obtained by Chandrasekhar2 for a 
homogeneous layer with a Rayleigh scattering phase matrix 
and Λ = 1. As seen from this figure, the difference between 
the degrees of linear polarization obtained by the exact 
technique and SASH is below 10% for optical depths 

0.2 < τ ≤ 5 and sighting angles 0 ≤ γ ≤ 90°. However, in the 
upper hemisphere this difference is too large, because of the 
neglect of the variance of scattered photons paths and 
backscattering in the small–angle approximation. In fact, 
the variance of scattered photons paths can not be neglected 
at τ > 5. This is clearly seen in Fig. 2 which illustrates the 
decrease of maximum value of the degree of linear 
polarization with increasing optical thickness of a medium. 
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Fig. 1. Degree of polarization of radiation in a medium calculated using SASH (dashed line) in comparison with the 
analytical solution by Chandrasekhar (solid line). 

 

In the case of the aerosol media and non–conservative 
scattering ( Λ ≠ 1) an estimation of the approach proposed was 
performed by comparing with the results obtained using 
Monte Carlo method. Results of such computations (3 ⋅ 10–5 
trials, the maximum variance within 4%) are presented in 
Fig. 3. The curves in this figure present calculational results 
for the forward scattering hemisphere for an aerosol medium 
with Λ = 0.8 and scattering phase matrix given by formulas 
(24) and (25) with g = 0.9. 

 
Fig. 2. Maximum degree of polarization as a function of 
optical depth: SASH (dashed line) and analytical solution 
by Chandrasekhar (solid line). 

 
 

Fig.3. Polarization degree within the aerosol medium and 
SASH (dashed line) and numerical Monte Carlo solution 
(solid line).  
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