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In this paper, we propose a tomographic algorithm for reconstruction of the 
energy profile of an optical beam from the data measured with a linear bolometer. 
This algorithm is based on a discrete Fourier transform (DFT). When reconstructing 
the DFT values and making linear interpolation, we used a raster in the form of 
concentric squares that essentially decrease the error of reconstruction and save a 
computation time. In a computer experiment, we have estimated the accuracy of the 
reconstruction method and determined the optimal number of projections. The 
proposed algorithm has been successfully used for reconstruction of the beam intensity 
distribution from the experimental data. The results of reconstruction were compared 
with the data of direct measurements. It is shown that the proposed algorithm allows 
most fast reconstruction of spatial energy structure of an optical pulse to be done. The 
accuracy of reconstruction is not worse than that of the existing algorithms when the 
noise level is no more than 20%. 

 
Application of laser radar technique to the solution of 

the problems in atmospheric optics calls for measuring the 
energy distribution over the beam cross section on different 
sections of the propagation path, because distortions of the 
beam wavefront are determined by the optical and 
meteorogical parameters of the atmosphere. The real-–time 
data on the beam energy profiles can be also used in the 
systems of adaptive correction of the distortions of the beam 
wavefront accompanying the laser beam propagation 
through the ground layer of the atmosphere. 

To measure the intensity distribution over the beam 
cross section, the tomographic methods1–5 are coming into 
use. To obtain the projections needed for reconstruction of 
the intensity distribution, these methods use contact 
measurement techniques that require insertion of matrix or 
bolometric receivers into a beam1,2 and remote techniques 
harnessing the effects accompanying the propagation of laser 
radiation through the atmosphere, for example, aerosol 
scattering3,4 and sound waves.5  

It should be noted that in spite of the peculiarities of 
different techniques of projection recording, all of them use 
either direct and inverse Fourier transforms or iteration 
techniques for image reconstruction. 

The advantages of the Fourier transform algorithm are 
the possibility of application of the well–known fast 
Fourier transform algorithm that can be easy realized in 
analog form. Moreover, the algorithm allows a priori 
information on the object symmetry to be effectively 
considered. It is important due to the fact that the intensity 
distribution over cross sections of various laser beams 
belongs to the class of integer functions of finite degree or 
exponential type.6,7 

The tomographic methods in which all operations on 
reconstruction of the structure of an object under study are 
carried out directly in the space of signals (iteration 
techniques,8,9 Radon transform techniques10), unlike the 
Fourier methods, have some advantages too and allow us to 
achieve a high quality of reconstruction for the finite 
number of initial projections, though they require the 
increased expenditures of computer time. 

Specific choice of the image reconstruction algorithm is 
determined both by requirements for the method itself (speed 
of response, resolution, total number of needed projections, 
and the like) and by its experimental realization including the 
types of employed recording elements. 

This paper presents the algorithm of tomographic 
reconstruction of the image of a laser beam in its cross 
section recorded with bolometers whose receiving elements 
are parallel wires with resistance varying in proportion to 
the amount of absorbed energy in the specific range of 
variation of the radiation intensity. 

First this class of problems was considered by 
Efremenko1 who applied the reconstruction technique 
harnessing the direct and inverse Fourier transforms. This 
algorithm yielded good results for the data obtained with the 
near–zero noise level, whereas the noise level of receiving 
elements of bolometers may reach 10–20%. Implementation of 
the algorithm of the inverse Radon transform with 
approximation of projections by the smoothing splines allowed 
Pikalov and Preobrazhenskii11 to obtain the reconstruction 
results with an error of 20–30% for the noise level up to 5%. 
Application of the third–degree polynomials in the same 
algorithm for the approximation of discrete series of obtained 
projections ensures the image reconstruction with the same 
accuracy when the noise level achieves 20%.  

In general the problem of reconstruction of unknown 
function X(u

1
, u

2
) specifying the structure of an object 

irradiated by a collimated beam is described in the 
following way. Continuum of the object projections for 
different angles θ varying in the range 0 ≤ θ ≤ π is assumed 
to be given. The projections at the preset θ can be obtained 
when the radiation source is placed at this angle to the 
examined object or the object is rotated through the angle θ 
to the direction of incident radiation. In the orthogonal 
system (u

1
, u

2
) when the source radiation is directed 

perpendicularly to the line making the angle θ with the u
1
 

axis, the new coordinate system (u
Ð

1
, u

Ð

2
) rotated about the 

initial coordinate system can be determined as follows: 
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and the projection of the function X(û
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2
) on the u

1
 axis 

at the angle θ is determined by the expression 
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This equation describes a family of linear integrals 
taken along a number of straight lines parallel to each other 
and the beam. The reconstruction problem is reduced to the 
solution of a finite number of equations of the form (2) for 
different values of the angle θ to obtain the estimate of 
X(u

1
, u

2
). Multidimensional discrete Fourier transform is at 

the same time an exact representation of the Fourier 
transform of the sequence of finite length as well as the 
expansion of multidimensional periodic sequence in the 
Fourier series. Many important properties of the discrete 
Fourier transform (DFT) follow from duality of the 
transform. One property is the theorem on projection cross 
section by which if the desired function X(u

1
, u

2
) has the 

Fourier spectrum X(ω
1
, ω

2
), the one–dimensional Fourier 

spectrum of the function Px
θ
(u

1
) will exist, moreover, the 

spectrum of the Fourier projection at the angle θ will 
represent a cross section of the two-–dimensional Fourier 
transform X(u

1
, u

2
). It follows from the theorem that the 

values of a few projections of an object yield the values of 
the Fourier transform along the chosen radii in the Fourier 
plane. So the problem of reconstruction of X(u

1
, u

2
) 

estimate is equivalent to the problem of interpolation of the 
Fourier transform, on the whole, on the basis of these radial 
cross sections. 

All things considered, let us construct an algorithm for 
reconstruction of radiation intensity distribution over the 
cross section of a beam in the given measurement plane. The 
energy distribution in the measurement plane is assumed to 
be described by the two-–dimensional function P(x, y), 
then the signal measured by each bolometric sensor can be 
related to the integral of this function. Let the optical 
radiation be propagated along the OZ axis in the (X, Y, Z) 
coordinate system affixed to a radiating source. Then a set 
of signals measured by the bolometers arranged in a grid 
determines the projection of the function P(x, y) on the 
OY axis at the angle θ with respect to the OZ axis, while 
M grids located in the measurement plane Z = Z′ and 
oriented at the angles θj = π j/M, where j = 0, 1, ... M –

 1, determine M discrete analogs of the projections of the 
function P(x, y) on the OY axis. The function P(x, y) is 
reconstructed directly from these projections. 

The grid orientation in space is specified in the (Xj, 

Yj, Zj) coordinate system. Then the projection of P(x, y) 

on the OYj axis, in accordance with Eq. (2), is determined 

by the expression 
 

AYj(Xj) = γ ⌡⌠
–∞

∞

 P [X(Xj Yj), Y(Xj Yj)]dYj, (3) 

 
where j is the factor of proportionality, and AYj(Xj) is the 

function of the continuous variable Xj.  

For the functions AYj (Xj) we have their discrete 

analogs in the form of a set of signals from all bolometers 

of each grid. The discrete Fourier transform defined by 
the expression 
 

G(w 
k
j) = 

1
N ∑

i=–(N–1)/2

(N–1)/2

  A(X 
i
j) exp [ ]– i 

2 p k i
N  , (4) 

 
where N is the number of bolometric receivers of one grid,  
–(N– 1)/2 ≤ k ≤ (N– 1)/2, and 0 ≤ j ≤ M is taken for each set. 

The values of the DFT obtained as a result of 
transformation of Eq. (4) can be considered as the 
readings of the Fourier transform taken at the regular 
polar raster shown in Fig. 1. Since P(x, y) has the finite 
domain of definition R and limited frequency range, it 
can be represented by (N × N) – point discrete Fourier 
transform. To reconstruct (N × N) values of the DFT, 
unlike the method of linear interpolation used in Ref. 1 
for the polar raster from two values of polar coordinates 
nearest to Cartesians reading and defined by circles of 
smaller and larger radii, a raster in the form of concentric 
squares is used for interpolation by our algorithm. Such a 
raster can be obtained by changing the data sampling rate 
vs. the angle θ. The step between the readings is 
determined by the formula 

 
h = 1 / max(⏐cosθ⏐, ⏐sinθ⏐). (5) 
 

 
 

FIG. 1. Illustration of interpolation of the values of 
Fourier transform of the desired intensity distribution to 
the nodes of Cartesians' grid: C is the reading at the node 
of Cartesians' grid; P

1
, P

2
, P

3
, and P

4
 are the readings of 

polar raster nearest to C ; d
1
 , d

2
 , d

3
 , and d

4
 are the 

distances from C to P
1
, P

2
, P

3
, and P

4
 , respectively. 

 
In this case each reading of the DFT is calculated as 

the weighted mean of the four nearest polar samples 
whose weights change inversely proportional to the 
Euclid distance between the points (see Fig. 1) 

 
c = p
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 d
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2
 d
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3
 d

3
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4
 d

4
 , (6) 

 
where d

1
 + d

2
 + d

3
 + d

4
 = 1 . 

 
For such a raster the interpolation is carried out into 

rows and columns of rectangular grid of the DFT and is 
thus one–dimensional. This not only decreases the volume 
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of computations but also substantially decreases the errors 
in reconstruction of the desired function.13 The values of 
unknown function P(x, y) are determined from its 
Fourier spectrum P(ω

1
, ω

2
) with the use of the inverse 

Fourier fransform 
 

P(X, Y) = ∑ ∑ 

ω
1
, ω

2
=(N–1)/2

ω
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, ω

2
=–(N–1)/2

G(ω
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2
) exp [i 

2π
N (ω

1
X + ω

2
Y)]. (7) 

 

 
 

FIG. 2. Initial graphics of discrete analogs of projections 
of the function being reconstructed at the angles 
θ = 0 (a), 30 (b), 60 (c), 90 (d), 120 (e), and 150° (f). 
 

 

 
 

FIG. 3. Pattern of spatial energy profile of measurable 
pulse reconstructed from the data of Fig. 2 (a); contour 
lines of blackening of the photographic material in the 
plane of measurement of radiation (b). 

 
 

The above–described algorithm was used for 
reconstruction of the intensity distribution from the data 
measured in the plane of beam cross section by six bolometer 
grids each containing 64 receiving elements. The grids were 
placed perpendicular to the beam propagation direction and 
the receiving elements were oriented at the angles θj = πj/6, 

where j = 1, ... 5, with respect to the axis of radiation 
propagation. The distributions of integral values of energy 
recorded by the bolometers for each grid are shown in Fig. 2. 
The reconstructed two–dimensional function is shown in 
Fig. 3a. Within the limits of the error of direct measurements 
of energy distribution, the validity of reconstructed profile of 
the signal under study can be judged from the degree of 
blackening of photographic material that was placed 
practically in the same plane with bolometric measurers during 
the experiment. The blackening contour lines are shown in 
Fig. 3b. It is clear from the comparison of Figs. 3a and 3b 
that the profile of horizontal projection of the beam 
reconstructed in the region occupied by this beam is in good 
agreement with the profile of heat burn on the material placed 
in the measurement plane. The same can be concluded about 
the overall size of the examined profiles along the X and Y 
axes and about their details. 

The computer experimental estimate of the accuracy of 
the method for the 64 × 64 model matrix which describes 
the Gaussian distribution and is reconstructed from the six 
projections shows that the relative error averaged over the 
whole grid and calculated by the formula 

 

δ = 
1

NM 
1

f
max

 
⎝
⎛

⎠
⎞∑

X=1

N

  ∑
Y=1

N

 (f(X, Y) – f '(X, Y)) , (8) 

 

where f(X, Y) are the initial values of the intensity 
distribution and f ′(X, Y) are the reconstructed values of 
this distribution, is 3%. To estimate the accuracy of the 
reconstruction algorithm in the presence of noise, the errors 
in measuring f(X, Y) were determined by the formula 
 

A'(Xi
j) = A X 

i
j (1 – R a 

i
j), (9) 

 

where a 
i
j are the random variables being normally distributed 

in the interval between –1 and 1 and R is the parameter 
determining the measurement accuracy. So for R = 0.2 the 
mean relative error for each value of the reconstructed 
distribution was 24 – 26%. In the solution of the problems 
with not very critical requirements for the time of 
reconstruction of the desired distribution, the algorithms of 
preliminary filtration14 may be applied to the initial data. This 
increases the reconstruction accuracy by 5 – 6%. 

It was found by the method of computer experiment that 
the use of six projections (in the case of 64 receiving elements 
arranged in a grid) is most optimal for sufficiently correct 
reconstruction of the initial function f(X, Y). A decrease in 
the number of projections leads to the sharp growth of the 
reconstruction error, while its increase insignificantly affects 
the reconstructed pattern, but sharply increases the volume of 
computations. This conclusion is in good agreement with the 
results of theoretical investigations of Ref. 15.  

From the preceding, it may be concluded that from all 
the existing tomographic algorithms, the proposed algorithm 
allows one to reconstruct most fast the spatial energy 
structure of optical pulse with the use of optimal 
combination of the number of initial projections and the 
number of readings for each projection. It ensures the 
accuracy of reconstruction of optical radiation structure no  
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worse than that of the data obtained by existing 
tomographic algorithms when the noise level is up to 20% 
and can be recommended for use in optical information-–
measurement systems. 
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