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In this paper we present a theoretical analysis of eye–safe semiconductor laser–
based lidar with a photon counting signal recording system. We have derived basic 
expressions to be used for assessing some physical parameters of the medium under 
study for the case of extremely low (micro–Joules) energy of sounding radiation per 
pulse that is several times lower than that of the daytime sky background. In this 
paper we also present a technique for transforming the function of photon distribution 
over intervals to the form convenient for linear presentation of signals. Analytical 
expressions for estimating limiting parameters of the lidar under study are derived. 

 

Wide application of lidars for investigating the 
environment, the atmosphere and water bodies is limited by 
the level of the optical radiation energy density at the 
object under study. Thus, in the visible spectral range the 
maximum value of laser energy density must not exceed 
0.5 μJ/cm2 in accordance with the recommendations of the 
American National Standard Institute (ANSI) and 
requirements of the World Health Organization.1 In 
November, 1992 this problem and the other problems of 
standard eye–safe level of laser radiation were discussed at 
the special symposium in Boston, the USA.2 

Substantial progress in developing highly efficient 
quantum counters based on avalanche photodiodes has made 
it possible to design the lidars with infinitely low level of 
transmitter radiation comparable with natural background 
in intensity, when the probability of signal recording from 
every laser shot is always much below unit.3–5 Use of the 
quantum counting technique in such lidars,6 when sounding 
the atmosphere, has its specific features typical of sampling 
mode of acquiring and statistical processing of data as 
opposed to traditional approaches with the use of analog 
signals.6 Creation of such instruments with the eye–safe 
radiation can strongly expand the range of use of optical 
remote means for environmental monitoring.5 

The subject of this paper is a theoretical analysis of 
operation of a microjoule aerosol lidar with a single–photon 
recorder to derive the basic relationships for measuring 
physical parameters of the medium under study. In this 
case, much attention was paid to a detailed investigation of 
the photocount distribution function considering the finite 
duration of the detector dead time and stochastic sources of 
different noise determining the maximum value of the 
signal–to–noise ratio when the noise exceeds the signal 
several times. 

 

1. FORMULATION OF THE PROBLEM 
 

A characteristic feature of any photon counter7 is the 
dead time, during which the counter is out of operation. In 
general, dead time and time for restoring the counter 
efficiency can be different, however, in this paper both 
above–mentioned times will be considered equal. In 
practical applications it is desirable that this time should be 
as small as possible, because it results in miscounts thus 
decreasing the efficiency of the detector. Let us analyze 
operation of a pulsed radar with a single–photon detector as 
a quantum counter. 

Let the pulsed source of photons switch on periodically 
and irradiate a medium under study within a certain sector 
determined by the radiation divergence. The photons 
scattered by an obstacle or along a sounding path arrive at 
the detector aperture which opens synchronously with a 
certain delay with respect to the transmitter pulse and 
remains open till the moment of a photon detection or 
during a certain period T, normally called a strobe or time 
gate. The strobe T is divided into cells of τ duration, 
determining the digitization step and spatiotemporal 
resolution along the sounding path. 

At each switching of the transmitter in one of the 
strobe cells, being erased prior to recycling, the unity can 
be added if during the period of this cell duration the 
photodetector records either an external photon or an 
internal photoelectron. If such an event does not happen 
during the strobe, the contents of the cells remain in the 
previous state. With multiple switching on of the 
transmitter, the photocounts are accumulated in the strobe 
cells and the histograms of events distribution are formed. 

Such an operation mode of recording events 
corresponds to operation of the counter of discrete signals 
with large dead time (LDT) t

d
, when T < t

d
 < T

0 
, where T

0
 

is the period of the strobe or photon pulsed source switching 
on, and T is the strobe duration. The characteristic view of 
the distribution function of the number of counts of such a 
counter when recording a signal and the background is 
shown in Fig. 1a. Here the first peak is due to light 
scattering by atmospheric aerosol along a sounding path in a 
homogeneous atmosphere and the second peak is due to 
scattering by an obstacle or an aerosol atmospheric layer. 

It should be noted that an actual counter with LDT 
can detect only one event during a strobe T, while an ideal 
counter with a zero dead time (ZDT) can record any number 
of events occurring during the strobe T. The histogram of 
counts for a detector with ZDT and large number of laser 
shots could characterize real dynamics of photon arrival and 
the number of counts in the histogram cell could be 
proportional to the intensity of a signal received. So the 
histogram of counts for a counter with ZDT (ZDT–
histogram) contains all information about the lidar return in 
the most suitable for processing form. However, the 
counting mode with the ZDT counter cannot be performed 
in practice because of the finite time of the detector 
relaxation. Note, that the possibility exists of coming from 
LDT–histogram, see Fig. 1a, to ZDT–histogram. An 
example of such a transform is shown in Fig. 1b. 
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Fig. 1. Typical view of the photocount number 
distribution histograms for counters with large (a) and 
zero (b) dead time obtained at identical parameters of 

the input event flux. 
 

As is seen from Figs. 1a and 1b, the histograms are 
strongly different. So, in the histogram shown in Fig. 1a 
the monotonic decrease of the number of noise photocounts 
with increasing time corresponds to the constant flux of an 
external noise. In this case the rate of the fall off and the 
area of the signal peak depend on the level of the external 
noise. Besides, the decrease of the number of counts in 
channels, following the signal peak, depends on its 
intensity. In the second histogram (see Fig. 1b) these 
peculiarities are not observed. 

Let us consider in more detail the problem on how the 
formation of a distribution and statistics of the number of 
counts over cells both for the counters with LDT and with 
ZDT while recording an arbitrary stationary flux of events 
in order to select a method of processing histograms 
obtained with an actual counter. 

It is assumed that during the measurement time and 
collection of data for a histogram the optical properties of 
the obstacle surface and the atmosphere between the object 
sounded and the detector change slowly and insignificantly, 
that is, the case of stationary flux of independent random 
events is considered. 

We denote the number of cells into which the strobe T 
is divided by k, then for both types of counters with ZDT 
and LDT, the space of random events Ω

1
 and Ω

2
 can be 

built up in the following way: 
 

t
d
 = 0;   Ω1

= {Pi}, i = 1, ... , k;  T < t
d
 < T

0
 ;  

 
Ω

2
 = {θi},  i = 1, ... , k ; 

 

Pi; t ∈ [(i – 1)τ; iτ];  θi = 
j = 1

i – 1

Π (1 – 
∼

Pj) 

∼

Pi;  t∈ [(i – 1)τ; iτ] . 

 
We choose the cell size so that P

i
 < 1 in Ω

1
 and θ

i
 < 1 in 

Ω
2
 for any i = 1, ..., k. Here P

i
 characterizes the frequency of 

events at input of the ith cell of the histogram in the space Ω
1
. 

It should be noted that because of a single–response of the 
counter during the time T the occurrence of an event at the 
ith cell of the strobe in the space Ω

2
 assumes the absence of 

responses in the preceding time for the cells i = 1, ..., i – 1, 
what makes up corresponding probability distribution {θ

i
} over 

cells i = 1, ..., k for the counter with LDT: if Pi = P, i = 1, 

..., k, then the obtained distribution of counts over cells 

θi = (1 – 
∼

P)i – 1
 

∼

P is described by the Pascal distribution law. 

The case when a stationary flux of events is to be 
recorded with a ZDT counter falls into the specific class of 
stochastic processes called point processes.7 To describe these 
processes one can use both the distribution functions over 
moments of recording Qs(τ

1
, ..., τ

2
) and over the frequencies 

of the events occurrence. The relationship between the above 
functions is presented in Ref. 7. Note that the function Qs 

should be used in the cases when the number of events 
occurring during any time interval is well–defined, that is, at 
each measurement the m–number of events is recorded, m 
being constant. If the value m varies randomly over different 
intervals and different quantity of events can be recorded, one 
can use the function fn , namely, the frequency distribution 

function. Since an actual counter with LDT can record no 
more than a single event during the strobe T, to describe its 
operation we must use the function f

1
(t), which actually 

presents the frequency of events at time t. 
A very important conclusion following from the analysis 

of the point processes7 is that the total number of events 
recorded during a time interval is described by the Poisson 
distribution. In this case, using functions fn(t1, ..., tn) we 

obtain an expression for the basic moments of the count 
number distribution over a time interval [ta , tb] 

 

<N> = ⌡⌠
ta

tb

 f
1
( t) dt;  <N2> = <N> + ⌡⌠

ta

tb

 f
2
(t

1
, t

2
) dt

1
 dt

2
 , (1) 

 
where f

2
(t

1
, t

2
) = f

1
(t

1
) f

2
(t

2
), which is valid in the case of 

recording a stationary flux of independent events. 
For the average value and the variance of the number 

N with the Poisson distribution 
 

PN
 = 

<N>N

N!  exp ( – <N>) (2) 

 

we have 
 

M( N) = <N>, D( N) = <N> . (3) 
 

Since ZDT–histograms are linearly related to the 
physical parameters of an object under study, it is interesting 
to consider a possibility of transforming data recorded with an 
actual LDT counter to the histogram of such a type. 

 

2. TRANSITION BETWEEN THE PROBABILITY  

SPACES Ω
1
 AND Ω

2
 

 
As noted above, for the stationary and independent 

random flux of events over the interval ta < t < tb the 

distribution of the sum of counts is of the Poisson type with 
the parameter 
 

<N> = ⌡⌠
ta

tb

 f
1
( t) dt =f(tb – ta) . (4) 

 

Then the probability of no event during a time interval 
is determined as P = exp (– < N >), and it is identical for 
both types of counters in Ω

1
 and Ω

2
. In this case the 

probability of recording an event in the strobe is 1 – exp (–
 < N >) and is always less than unity, while < N > can take 
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any positive values. For weak quantum fluxes, when 
< N > < 1, the value < N > can also be used for determining 
the probability of a ZDT counter response. In this case 
P = < N > = fτ < 1, where f is the average frequency of 
occurence over the time interval τ, for example, the strobe 
cell. As a result the relationship between Pi in Ω

1
 and Pi in 

Ω
2
 can be presented as  

 
∼
Pi 

= 1 – exp ( – Pi) = 1 – exp ( – fi τ) ,  i = 1, ... , k . (5) 

 
In the case of τ satisfying the equation 

max fi τ = Pi n 1, 

 

Pi =
 ∼
Pi = 

fi τ n 1 , i = 1, ... , k . (6) 

 
In our below discussions we shall assume the 

condition (6) to be fulfilled. The cases, when this condition 
is not fulfilled, will be considered separately. 

Consider now in more detail how the probability of an 
event occurrence in the ith cell of space Ω

2
 is determined. 

Its structure represents a successive series of the probability 
products. The formula (5) for θi can be written as  

 

θi
 = j = 1

i – 1

Π(1 – 
∼
Pj) 

∼
Pi

 = exp 

⎝
⎜
⎛

⎠
⎟
⎞

 – ⌡⌠
0

(i – 1)t

 f
1
( t) dt  = 

 

= exp 

⎝
⎛

⎠
⎞ – ∑

j = 1

i – 1

 fj t Pi . (7) 

 
Multiplication of both parts of this equality by N yields the 
relationship between the average values of counts in the ith 
channels from Ω

1
 and Ω

2
 spaces. 

In a limiting case when the cell size vanishes, one can 
obtain the differential form of the probability in Ω

2
 in terms 

of the distribution function 
 

dθ( t) = exp 

⎝
⎜
⎛

⎠
⎟
⎞

 – ⌡⌠
0

t

 f
1
( t′) dt′ f

1
( t) dt . (8) 

 

The expression in the right–hand side is the most 
general view of the event distribution function over time 
intervals. 

Let us write basic expressions relating the probabilities 
of photocount recording in a count channel with a ZDT and 
LDT counters 
 

θi = Pi exp 

⎝
⎛

⎠
⎞ – ∑

j = 1

i – 1

 fj t
 = Pi exp ( – μ(1; i – 1)),  

 

exp ( – μ(1; i – 1)) = 1

 

– 

⎝
⎛

⎠
⎞∑

j = 1

i – 1

 Nj(Ω
2
) / N , (9) 

 

where Nj(Ω
2
) is the number of photocounts in the ith channel 

of a ZDT–histogram and N is the number of the counter 
operation cycles. 

Let us consider the question on the precision to 
determine {Pi}, i = 1, ... , k in Ω

1
 if we know {θi}, 

i = 1, ... , k in Ω
2
.  

For a stationary flux of random independent events 
the number of photocounts recorded in a time gate after 
N recyclings of a ZDT counter obeys the Poisson 
statistics. However, in the case of an LDT counter the 
distribution over channels will change. Below we shall 
derive, based on qualitative considerations, the 
probability distribution law, and write the basic moments 
of the photocounts distribution function in a channel for 
this case. 

Let us assume that fτ equals w for the counter with 
ZDT, then for LDT P = 1 – exp(– w), P < 1 at any w. 

Consider the case when w . 1  
 

<N> = fτ N .  D(N) = <N> = fτ N , 
 

<N> = N(1 – exp (– w)) = N(1 – ε) ,  
 

D(N) = Nε(1 – ε) , 
 

there exist such values N and ε that Nε n fτ n N, that 
is, the rms deviation of the count number in the interval 
is overestimated. Actual variance of the count number 
distribution in a channel from Ω

2
 is less than the 

corresponding value resulting from the Poisson 
distribution. From Eq. (2) it follows that at < N > n 1 
the probability of recording a single event during a time 
gate is P = < N > exp (– < N >), corresponding value for 
two events equals (< N >2/2) exp (– < N >), that is, 
< N >/2 times less than for a single event. Thus, at a 
small probability of occurrence of events during a time 
interval of duration τ, the parameters of the sought and 
the Poisson distributions are approximately the same. At 
a large probability of occurrence of events during a time 
interval the rms deviation of the sought distribution 
becomes less than the corresponding value for the Poisson 
distribution. The distribution with such characteristics is 
binomial. 

Let us multiply Eq. (9) by N and rewrite it in the 
form: 
 

Ni(Ω
1
) =

 Ni(Ω
2
) exp ( μ (1; i – 1)) . 

 

From this equation it follows that the number of counts 
in a channel of the reconstructed histogram is determined by 
the product of two random values. The contribution into the 
error of Ni(Ω

1
) coming from the exponential factor can be 

neglected here because of the integral nature of the latter, see 
Eq. (9). Thus, relative rms deviation in a channel of the 
reconstructed histogram is determined by the distribution 
function in the corresponding channel of the initial histogram. 
In this case, for the histogram reconstructed in Ω

1
 we have 

 

Ni(Ω
1
) = Ni(Ω

2
) exp ( μ (1; i – 1)) ; 

 

D(Ni(Ω
1
)) = Ni(Ω

2
) exp (2 μ (1; i – 1)) ,  i = 1, ... , k ; 

 

exp ( – μ (1; i – 1)) = 1 –
⎝
⎛

⎠
⎞∑

j = 1

i – 1

 Nj(Ω
2
) / N  . (10) 

 

In cases when the condition (6) is not fulfilled, one 
must use binomial distribution for the number of 
photocounts in a time interval. Calculations made using 
expressions for differentiating a function of a random 
variable result in the following mean value and variance 
of the number of counts in a ZDT–histogram recalculated 
from a LDT–histogram: 
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Ni(Ω
1
) = N ln 

⎣
⎢
⎡

⎦
⎥
⎤1

1 – 
Ni(Ω

2
)

N

 exp (μ (1; i – 1)) ; 

 

D(Ni(Ω
1
)) = 

⎣
⎢
⎡

⎦
⎥
⎤N Ni(Ω

2
)

N – Ni(Ω
2
)

2

 exp (2 μ (1; i – 1)) ; (11) 

 

exp ( – μ (1; i – 1)) = 1 – 
⎝
⎛

⎠
⎞∑

j = 1

i – 1

 Nj(Ω
2
) / N  ,  i = 1, ... , k . 

 
Figures 1a and b give an example of such a 

reconstruction made using this technique. 
 

3. APPROXIMATION OF THE DISTRIBUTION OF 

COUNTS OVER A RECONSTRUCTED HISTOGRAM 
 
Let us consider here the problem on convergence of the 

obtained distribution functions for number of counts to the 
Gaussian distribution. We shall use the following 
designations: 
 

PN(K) = CK
N PK qN – K ,  CK

N = 
N!

K! (N – K)! , 

 

Ô( x) = 
1

2π
 ⌡⌠
– ∞

x

 exp( ) – 
i2

2 ,  PN( x) = PN(Np + x Npq) . 

 
FN( x) = PN( – ∞; x) . 

 
Omitting here strict derivation, we shall give the final 

result which is a special case of the Berry–Esseen 
theorem9,10 
 

sup
– ∞ ≤ x ≤ + ∞

⏐FN( x) – Ô( x)⏐
 
≤  

p2 + q2

Npq
 . (12) 

 
From this inequality it follows that the approximation 

with a Gaussian distribution of the number of counts in a 
channel is the more precise the larger is the number of the 
count in it. As an example, one can use the criterion 
Ni(Ω

2
) > 100 (see Ref. 8). 

The rate of convergence of the Poisson distribution to the 
Gaussian one may be assessed by the asymmetry factor γ (see 
Ref. 11) 
 

γ = 
M(ξ – M(ξ))3

D(ξ)3
 = 

1

Ni(Ω
2
)
 . (13) 

 
It should be noted that for the Gaussian distribution γ = 0. 
These relationships will be used for developing the criterions 
of signal detection against a preset background noise. 

 
4. GROUNDS FOR MAKING INDEPENDENT 

ESTIMATIONS OF NOISE 

 
In the preceding sections we have considered the 

methods for estimating the error of count numbers in a 
separate channel and in a gate. 

Let us consider the case when in addition to 
background counts there is a signal peak in the 
histogram, the width of the peak being on the order of 
several channels (see Fig. 2a). The area covered with this 
peak on a plot is the sought value. 

 

 
 

Fig. 2. Illustration of the method of measuring the signal 
level with the background: a) the reconstructed histogram of 
the count number when recording the signal and background 
noise and b) the reconstructed histogram of the count 
number when recording only the background noise. 

 

Having restored the histogram, obtained for a 
counter with LDT, we write the expression for the signal 
peak area 
 

S
s + n

 = ∑
i = k

1

k
2

 Ni ,  S
s + n

 = ∑
i = k

1

k
2

 D(Ni)  in Ω
1 
. (14) 

 
Based on thus reconstructed ZDT–histogram, one can 

estimate the background noise level by a straight line drawn 
through the points that represent boundary channels of a 
given peak (see Fig. 2b). In this case the background 
characteristics can be determined as follows:

 
 

S
n
 = ∑

i = k
1

k
2

 Nin(Ω
1
) ,  

D(S
n
 ) = ∑

i = k
1

k
2

 Nin(Ω
1
) exp (μ (1; i – 1)) .  (15) 

To calculate exp ( –μ (1; i – 1)) = 1 – 
⎝
⎛

⎠
⎞∑

j = 1

i – 1

 Nj(Ω
2
) / N  

the value of Ni(Ω
2
) should be determined for the channels 

k
1
 < j < k

2
 in the absence of the peak. It should be noted 

that Njn(Ω
1
) is the number of counts in the cells of 

reconstructed histogram when recording the noise solely. 
The numbers in these channels correspond to the region of 
the signal peak on the "signal + noise" histogram. 

It is evident that the determination of S
n
 is connected 

with the curve approximation using count numbers in the 
channels on both sides of the peak. Note that such a 
procedure of separating out the background is not always 
justifiable statistically from the standpoint of estimating the 
accuracy of the results obtained. To improve the accuracy of 
measurements as well as to simplify the algorithms of 
extracting the signal from noise it is proposed to subtract 
from signal + noise counts the number of noise counts only 
that are counted in a strobe of the same duration as that of 
a signal + noise strobe. 

Thus, the sought values are calculated based on the 
histograms available. Note that sometimes we can do this  
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without recording number of counts in the background 
strobe. Such cases will be considered below. 

In a real experiment, when evaluating physical 
parameters, the additional errors must be considered. These 
errors can be caused by instabilities in the recording 
electronics. Let us consider the case of equally probable 
fluxes of events at the counter input. It is assumed that the 
mean value and the variance of the count number in a 
channel of the histogram for the LDT counter are estimated 
using data in all channels with the subsequent calculation 
of a sample mean and variance. In this case, for the 
probability of recording a count in a channel of the 
histogram we use the following randomized expression (the 
analog of the Mandel formula): 

 

Pn = ⌡⌠
0

∞

 Φ( z) 
zn

n! exp ( – z) dz . (16) 

 

It is not difficult to obtain the expressions for the 
mean value and the variance 

 

M( n) =
–
z  = ⌡⌠

0

∞

 Φ( z) z dz ,   (17) 

D(n) = 
–
z 2 – (

–
z )2 + 

–
z  . (18) 

 

Let us involve generalized functions of the type 
Φ(z) = δ (z – z

0
) into the range of definition Φ(z). As a 

result for a ZDT counter we have 
 

M(
 
ni) = z

0
 . (19) 

 

Then for a LDT counter the following expression is valid 
 

M( ni) = (1 – exp ( – z
0
)) exp ( – (i – 1) z

0
) . (20) 

 

It is evident that with the increase of the count numbers in 
the histogram channels one can make the relative deviations 
from z

0
 negligible for all the channels. 

Let us assume that a ZDT counter recorded a 
histogram of counts, and there are small deviations from z

0
 

in its histogram channels because of different efficiencies of 
recording in the channels. This circumstance can be taken  

into account by introducing a set of values {Δzi}, 

i = 1, ... , k. In this case 
 

Φi( z) = δ (z – z
0
 – Δ z

0i) = δ(z – zi) in Ω
1
 . (21) 

 

Consider now a technique following which we can 
compare the errors of two ways of estimating the signal 
peak area. The first way implies the use of the 
approximation by a straight line through a separated out 
portion of the reconstructed "signal + background" 
histogram for determining the background level (see 
Fig. 2a). In the second way the background level is 
characterized by the count numbers in the relevant cells of a 
separate background histogram. 

Thus, following the expression (16) for the 
probability, the spread {Δzi}, i = 1, ... , k in the channels of 

a reconstructed histogram can be characterized by the 
distribution function Φ1(z). The width Φ1(z) characterizes 
the additional contribution coming from stochastic sources 
into the Poisson part of the error (see Eq. (18)). 

Assume that in the measurement process two strobes 
are formed alternately for obtaining two data sets. The 
signal and background photocounts can be accumulated in 
the first data set and in the second strobe only background 
events are accumulated (the photons of external radiation 
and the detector noise). In both cases stationary random 
fluxes of equally probable events arrive at the receiver 
input. After reconstruction of histograms the part, limited 
by channels k

1
 and k

2 
, is separated out (Fig. 3). 

Let us write the expression for the average number of 
counts in a channel for the first histogram: 
 

N
–

 
(1) = 

1
k

2
 – k

1
 ∑
j = k

1

k
2

 N(1)
j   in Ω

1
 , (22) 

and for the second histogram 

N
–

 
(2) = 

1
k

2
 – k

1
 ∑
j = k

1

k
2

 N(2)
j   in Ω

1
 , (23) 

 

where N j
(1) and N j

(2) are the numbers of counts in the jth 

channel for the first and the second histogram, respectively. 
 

 

 
 
 
 

 

224 
0 
2873 
6486 
6699 
6444 
6649 
6233 
6410 
6340 
6371 
6424 
6247 
6105 
6271 

5896 
6108 
5936 
6112 
5766 
5902 
5787 
5939 
5795 
5940 
5627 
5868 
5638 
5686 
5479 

  
 
 
 

 

249 
0 
2861 
6652 
6739 
6471 
6607 
6360 
6563 
6152 
6577 
6195 
6289 
6194 
6353 

5996 
6069 
5805 
6055 
5823 
5889 
5770 
5918 
5739 
5689 
5757 
5835 
5559 
5588 
5443 

Fig. 3. Typical view of histograms to illustrate the method of estimating the contribution of sources of stochastic noise. 
 

Let us write the expression for the variance of counts 
in a channel in the presence of additional sources of 
stochastic noise 
 
D

a
 = σ2

a
 = σ2

P
 + σ 2

a.s.
 , (24) 

 

where σ
P
 is the rms deviation of the count number in the 

channel assuming Poisson distribution; σ
a.s.

 is the rms 

deviation due to additional stochastic noise; D
a
 is actual 

variance of the count number in the channel; and, σ
a
 is actual 

rms deviation. 
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In the first case, for characterizing the contribution 
from additional sources of noise without the use of the 
background histogram one can write the following 
expression: 
 

ξ
1
 = 1

k2 – k1
 

∑
j = k

1

k
2

 
 

(N
–

(1)(Ω
1
) – N j

(1)(Ω
1
))2

N
–

(1)(Ω
1
) exp(1)

 (μ (1; j – 1))
 – 1. (25) 

 
In the second case, when the background histogram 

used, the same characteristic is 
 

ξ
2 
= 1

k2 – k1
 × 

 

× ∑
j = k

1

k
2

 

(N(1)
1
(Ω

1
)– N(2)

1
(Ω

1
))2

N
–

(1)(Ω
1
)exp(1)(μ(1; j–1)) + N

–
(2)(Ω

1
)exp(2)(μ(1; j–1))

 –1.  

   (26) 
 

In the general case the expressions under the sum sign 
for ξ

1
 and ξ

2
 present the ratio of the squared absolute 

deviation from the average count number in an actual 
channel of the reconstructed histogram to the theoretical 
value of the variance in the channel, resulting from the 
procedure of reconstruction. In the absence of additional 
sources of noise the values ξ

1
 and ξ

2
 must be close to zero, 

since the corresponding expressions are written assuming 
Poisson distribution of counts in the channels of initial 
histograms. 

When comparing the values ξ
1
 and ξ

2
 we may state the 

following: 
1. If ξ

1
 > ξ

2
 the use of the background histogram is 

justified from the standpoint of an increase in the precision 
of the results obtained. 

2. If ξ
1
 is essentially less than ξ

2
, the use of the 

background histogram is not always justified. From values 
of ξ

1
 and ξ

2
 one can evaluate the relationship between the 

actual variance and the variance corresponding to a purely 
Poisson process 
 

D
a i = (ξi + 1) D

P
 ,  i = 1, 2 . (27) 

 

Then the estimate of additional contributions from 
sources of stochastic noise is written as a simple relation 
 

D
a.r i = ξi DP

 ,  i = 1, 2 . (28) 
 

Here D
a.ri is the variance of counts caused by additional 

sources of random noise. 
Besides, to check the hypothesis on the validity of the 

Poisson distribution we use here the χ2 criterion 
 

ξi = 
1
n χ2

i – 1 ,  i = 1, 2 . (29) 

 

The analogy with χ2 becomes more complete if the 
sums for ξ

1
 and ξ

2
 are expressed in terms of Ni(Ω

2
). 

This criterion should be used when analyzing actual 
histograms since in this case we can compare the 
performance characteristics of real devices in values of 
contributions from additional noise sources into the 
distribution (16). Note that at small number of counts in 
the channels of a LDT–histogram the relative contribution 
of additional factors into the Poisson part of errors is, as a  

rule, insignificant. If we should measure the intensity of the 
signal–photons flux with a high precision, the contribution 
from additional sources of stochastic noise into the error of 
the measured value should necessary be accounted for. 

Recording of the background should be also performed 
for simplifying the algorithms of signal search and 
processing. 

 
5. ASSESSMENT OF CONTRIBUTION FROM 

SOURCES OF STOCHASTIC NOISE TO THE ERROR 

OF SIGNAL MEASUREMENTS 
 
A possibility of using the developed procedure for 

assessment of a contribution from sources of stochastic noise 
to the error of signal measurements was considered as an 
example when analyzing histograms obtained with an 
operating lidar model. The histograms of the numbers of 
counts (see Fig. 3a and b) were formed in the alternating 
mode when recording only the noise in the absence of laser 
pulses and signal + noise. The number of measurement 
cycles, in both cases, was equal to 1 024 000. To calculate 
the values ξ

1
 and ξ

2
, arbitrary portions of the histograms 

including more than 10 channels were selected. The results 
of calculation, necessary for revealing the presence of 
sources of stochastic noise, and for estimating the noise 
level are summarized in Table I. 

 
TABLE I.  
 

No.
 

Average number of 
counts 

ξ
1
 ξ

2
 Channel in Ω

1

 

1 
 

N = 6622 
 

1.23 
 

– 0.12 
 

 5 – 30 
2 N = 6685 1.015  0.042  5 – 15 
3 N = 6576 1.38 – 0.23 16 – 30 

 
Note. Here N is the average number of counts in the 
histogram channels (see Fig. 3a) after reducing it to a 
linear form. The values ξ

1
 and ξ

2
 are connected with the 

distribution χ2 (29) and are calculated using only the 
values from the first histogram (25) and the differences of 
actual counts in the current channels of both histograms 
(26) after their reconstruction, respectively. 

An example of calculation of the contribution from 
sources of stochastic noise to the measurement error is 
done below using the data of the third line of Table I. 
Let us verify the hypothesis that the distribution of 
numbers of counts in channels of the histogram (Fig. 3a) 
is Poissonian. Having assessed only one parameter of 
Ni(Ω

2
) of the distribution function, we obtain 13 degrees 

of freedom for χ2 (see Ref. 11). 
As seen from Table I, the value ξ

1
, calculated on the 

basis of the experimental data of the first histogram, is 
close to unity that corresponds to the value 
χ2 = 13 × 2 = 26. For the purpose of revealing 
insignificant deviations of the process statistics under 
study from the proposed hypothesis we select, from a 
standard set of values, the maximum level of significance 
at α = 0.05 (see Ref. 11). For this value of α we find 
χ2 = 22.4 using the tables from Ref. 11. As is evident 
from the comparison, a tabulated value of χ2 is smaller 
than a real one, therefore our hypothesis about the 
Poisson distribution of the counts in a cell of the 
analyzed histogram is inadequate to the process under 
study,11 since the variance of the number of counts, 
calculated for a selected number of channels, significantly 
exceeds the mean value. 
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This inadequacy can be explained by the presence of 
sources of stochastic noise, making an additional 
contribution to the variation of the parameters of signal 
measurements. These errors can be due to different 
efficiencies of recording in different cells, though the 
difference being a small value {Δzi}, i = 1, ... , k. This is 

well seen from a visual comparison of counts in the channels 
of histograms for different measurement cycles (see Fig. 3). 
The observed periodic modulation of the number of counts 
along the histogram results in the value ξ

1
 close to unity, 

i.e., real variance of counts in cells exceeds the Poisson one. 
Hence, there are some additional sources of stochastic noise 
in the device. The contribution coming from them into the 
variance of the parameters may be assessed by formula (27). 
The calculation shows that, in the considered example, the 
actual variance of the parameters is twice as large as the 
calculated one. The account of the contribution from sources 
of stochastic noise, producing periodic modulation of the 
numbers of counts in channels (Fig. 3a), is possible with 
the use of the second histogram and the parameter ξ

2
. 

The characteristic value of ξ
2
 calculated using the 

difference of two histograms (26) is close to zero. In this 
case,  
 
χ2 = nξ

2
 + n  for  n = 15 ,  ξ

2
 ≅ 0 ,  χ2

1 – α
 = 15 . 

 
Since real value of χ2, obtained from two histograms, 

is less than the tabulated one, our assumption is in 
agreement with the hypothesis on the Poisson distribution 
of the numbers of counts in the channels of the initial 
histogram. This is the result of decreasing the contribution 
from the modulation of numbers of counts in channels to 
the error of signal measurement when subtracting the noise 
histogram, since there is a correlation between counts in 
relevant channels of the histograms. 

Thus, when considering the criterion of signal detection 
with a LDT counter, the signal being above the background 
level, using two histograms with a separate noise recording, 
one can use the Poisson distribution law for the number of 
counts in a channel. The negative values of ξ

2
 can be due to 

insufficient precision of the approximation (10) used when 
calculating the parameters of reconstructed histograms, as well 
as the characteristics of χ2 distribution used. 

The discussion of correctness of use of χ2 distribution 
for investigating the contribution from sources of stochastic 
noise requires further investigation. 

Here we shall pay special attention to the sensitivity 
of the statistical approach discussed to the search of a 
signal. Let the signal be a 4% variation in the number of 
counts in isolated channel, from 5787 to 6037 (see the 22nd 
channel at the first histogram and the table of numbers of 
counts in Fig. 3). Then we obtain the value of the 
parameter ξ

2
, calculated over 15 channels, from 16 to 30, in 

the absence and in the presence of a signal in the 22nd 
channel of the histogram. A comparison shows that the 
value of the parameter (ξ

2
 + 1) varies from 0.77 to 1.16, 

respectively, that exceeds essentially (more than by 4%) the 
value of the parameter (ξ

2
 + 1), calculated for different 

portions of the histogram (see Table I). Thus, the 
considered approach can be used for searching the strobe 
with signal counts, distributed over some histogram 
channels and for detecting the signal localized in one or in 
several channels at high level of noise. 

As an example we consider a question on detecting 
extremely weak signal–photons fluxes by a lidar with a 
single–photon detector. It is well known that the criterion 

of reliable recording is given by the probability of false 
count. Let us assume that the distribution of counts for an 
individual channel of a histogram can be approximated, 
highly accurate, with normal distribution.12,13 For detecting 
a signal with the probability of false count of 0.3%, the 
excess of more than 3σ of the average value of signal 
amplitude in one channel is needful.11 

Let us assume that the noise level measured with a 
lidar during a single cycle is 5479 counts in the last 
channels of histogram for a LDT counter. According to the 
previous discussion one can obtain two values of the rms 
deviation resulting from the distribution function Φ

1(z) 
without the background histogram and with it, respectively. 

In the first case we obtain σ
1
 = 5479 ⋅ 2 = 105, and 

in the second case σ
2
 = 5479 = 74. 

From this result the limiting values of the signal and 
the signal–to–noise ratio necessary for providing a given 
reliability of detection are: in the first case not less than 

3σ
1
 = 315, (S/N)

1
 ≅ 

315
5479 = 5.7 ⋅ 10–2, and in the second 

case it is not less than 3σ
2
 = 222, (S/N)

2
 ≅ 

222
5479 = 4 ⋅ 10–2. 

Thus, these estimates show that the lidar with a 
single–photon detector can measure the signal in a real time 
scale at the level of some per cent of the background noise 
with the recording reliability not less than 0.997. This 
conclusion is especially important for the problems of 
sounding the environment or the living tissue since it shows 
that it is possible to use a sounding beam with the tens 
times lower than that of natural background from solar 
radiation.12 

Besides, the implementation of the technique of a 
separate evaluation of noise level with the subsequent 
subtraction from signal plus noise counts can essentially 
increase the detection quality. The above technique enables 
one to increase the sensitivity and detectability of the 
receiving channel, which is of a particular importance when 
studying nonstationary processes with limited time for 
signal recording. 

 

CONCLUSIONS 
 

1. The model of lidar performance with a single–
photon detector is proposed and justified theoretically. The 
paper analyzes the operation of the detectors with dead time 
of different types. On the basis of this analysis the authors 
developed a method of transition from actual histograms, 
characterizing the distribution function of photon recording 
in the intervals for the counter with large dead time, to 
linearized histograms for the counter with zero dead time. 
Such histograms in a linear form show the physical 
characteristics of the medium sounded. 

2. The paper presents the analysis of the factors 
determining the maximum value of the signal–to–noise 
ratio in the lidar with a quantum pulse counter. The 
influence of stochastic noise sources on this ratio is 
considered, and the technique for assessment of contribution 
from such sources into the measurement error is developed. 
It has been experimentally demonstrates that the signal 
measurement with subsequent subtraction of noise makes it 
possible to increase about 1.4 times the maximum value of 
signal–to–noise ratio when recording the signal being tens 
times low than the background intensity. 
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