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The problem of representation of absorption function by a series of exponents 
with the coefficients expressed directly in terms of characteristics of spectral lines is 
discussed. 

 
1. ON CALCULATION OF SPECTRALLY 

INTEGRATED QUANTITIES 
 

In discussion of a number of radiative problems the 

necessity arises to find a quantity 
∼
G = (1/Δω)

⌡⌠
ω'

ω′′
 dω G(k(ω))  

(ω is the frequency and Δω = ω′′ – ω′ is the spectral 
interval), when the spectral optical density of a gas 
τ = κ l = k z. Here κ(ω) is the molecular absorption 
coefficient (cm–1), l is the distance travelled by a beam, z is 
the properly introduced dimensionless "length". The special, 

but important, example of the function 
~
G is the 

transmission function 
 

P(z) = (1/Δω) 
⌡⌠
ω'

ω′′
dω exp (– k(ω) z) . (1) 

 

The problem associated with Eq. (1) is apparent, 
namely, the "palisade" of a great number of spectral lines 

makes direct (line–by–line) calculation of 
∼
G so cumbersome 

that the difficulties are no longer only technical (especially 
if one deals with "sufficiently large Δω" that is just the case 
in geophysical applications). The way around this problems 
by introducing "k–representation" is lively discussed in 
Refs.1–15, and the summary of relevant equations is given 
below for references. 

The function (1) is considered to be the Laplace 
transform for f(s) 

 

P(z) = ⌡⌠
0

∞

 
 d s f(s) exp ( – z s) ,  

f(s) = (1/2 π i) ⌡⌠
a–i ∞

a+i ∞

 
 d z P(z) exp (s z) , (2) 

 

where a ≥ 0, and further 
 

g(s) = ⌡⌠
0

s

 
 f(s′) d s′ = (1/2 π i) ⌡⌠

a–i ∞

a+i ∞

 
 d z (P(z)/z) exp (s z) (3) 

 

with obvious conditions g(0) = 0, g(∞) = 1. Now 
 

∼
G = (1/Δ ω) 

⌡⌠
ω'

ω′′
G(k(ω)) dω = 

⌡⌠
0

1

G(s(g)) dg ,  (4) 

where s = s(g) is the function inverse to that defined by 
Eq. (3). The rigorous proof of Eq. (4) is, in fact, the 
variation on the theme of the Parseval theorem. 

Of course, Eq. (4) will greatly simplify the problem 
only if k(ω) with its numerous maxima and minima 
converts to the smooth curve s(g). This hope supported 
incidentally by numerical simulations is based on a very 
transparent concept. 

The quantity exp(–sz) in Eq. (2) can be considered 
as a "spectral transmission with the absorption coefficient 
s", and f(s) – as the density of probability that k(ω) = s. 
Furthermore, the first integral in Eq. (2) can be 
interpreted as the integral from Eq. (1) in which the 
interval Δω is at first divided into parts with equal values 
of k. The quantity (3) finds the meaning of the integral 
of the probability density and should be a monotonic 
function with all the consequences ensuing therefrom for 
s = s(g). (The term "k–distribution" is just introduced 
from the similar considerations.) In fact, the first problem 
is reduced exactly to the rigorous proof of the monoton of 
function (3) and of s = s(g). 

Furthermore, the expression (4) may be useful only 
when function (3) is known; however, the function (1) is 
already involved in the definition of the last function. 
The authors of Refs. 1–15 prefer the way when a certain 
model of the spectrum is chosen, and the corresponding 
expression for P(z) appears which enters explicitly into 
Eqs. (2) and (3). To evaluate the model parameters (for 
example, the average line intensity, the average 
separation between the lines, etc.), the information on the 
line characteristics is used and the correction of 
parameters according to the empirical or line–by–line 
calculated data is made. 

The reasons why such approach to the problem of 
g(s) should be declared as approximate are quite evident. 
Firstly, the choice of the model itself is essentially 
limited by the desire to have the integrals in Eqs. (2) and 
(3) which can be taken in a closed form. Otherwise, their 
numerical computation would return the problem, in fact, 
to the initial Eq. (1). Secondly, the possibility to write 
down the acceptable expression for P(z) is rigidly 
regulated by choosing the line shape. Moreover, the 
description is usually adopted which is valid for the 
resonance absorption, and the problem of the line 
periphery, essential for k(ω) and P(z) (see, for example, 
Ref. 16) is actually ignored. Thirdly, the transformations 
(2) and the "inversion" of Eq. (3) have the unpleasant 
peculiarities of the inverse problems, i.e., they "swing" 
the errors in P(z). Incidentally, the last circumstance 
creates a serious obstacle to applying the empirical 
approximations of the transmission function. 
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Then the second problem becomes clear, namely, the 
direct calculation of g(s) using the spectral line 
characteristics, avoiding the stage of model construction 
of the transmission function. 

Finally, the third problem consists in choosing 
formulas for integration of Eq. (4) to minimize the 
number of terms, for example, in the expression 
 

P(z) = ∑
n

 
 an exp ( – λn z) , (5) 

 
which is the Dirichlet series with the coefficients an and λn. 

As an illustration, the approach of Ref. 17 to the solution of 
the transfer equation with nonselective characteristics of the 
aerosol light scattering can be mentioned. Its efficiency is 
determined, in fact, by the number of terms in series (5). 

Of course, all the above–enumerated problems are 
purely technical, and the systematic and mathematically 
justified expedient is necessary based on databases of 
spectroscopic information. Such expedient is presented in 
Sec. 2, and its additional possibilities in searching the 
approximate versions of solution of the problem under 
consideration are shown in Sec. 3. 

 
2. SOME MATHEMATICAL ASPECTS OF  

K–REPRESENTATION 
 
It may appear that the question on relation between 

f(s) from Eq. (2) and k(ω) is almost trivial. Indeed, it 
would suffice to substitute Eq. (1) into the second of 
Eqs. (2), to interchange the order of integration over ω and 
z, to change the variable in integration z = a + iξ and, 
finding out the representation of the δ–function, to write 
down 
 

f(s) ⇒ (1/Δ ω) 
⌡⌠
ω'

ω′′
dω δ (s – k(ω)) . (6) 

 
The sign "=" is substituted by "⇒" to underline that the 
interchange of ∫dω and ∫dz was made without proof. 

However, the integral (6) will exist only if k′(ω) ≠ 0 
in the interval Δω, and this condition contradicts physical 
nature of the problem, i.e., to the "palisade" of spectral 
lines with numerous maxima and minima. It implies 
mathematically that the interchange of the order of 
integration in Eq. (1) and in the second of Eq. (2) is 
impossible. 

Nevertheless, such operation is acceptable after 
substitution of Eq. (1) into Eq. (3), and the final expression 
will be 
 

g(s) = (1/Δ ω) 
⌡⌠

u(ω) dω , 
(7)

 

k(ω) ≤ s
 
, ω ∈ [ω′, ω′′] . 

 
In Eq. (7), u(ω) = 1 everywhere except the point k(ω) = s, 
in which u = 1/2. All related to Eqs. (6) and (7) 
mathematical details are given in Appendix A. 

Figure 2 and its consequence Fig. 3 become 
understandable from expression (7) and from Fig. 1 taken as 
its illustration. The monoton of Eq. (4) and of s = s(g) 
which was considered earlier as a plausible hypothesis, 
appears to be the rigorously proved assertion. 

 

 
 

FIG. 1. Function g(s) represents the sum of intervals 
marked on the abscissa. 
 

 

FIG. 2. The "plateau" corresponds to ∼s from Fig. 1. 
 

 
FIG. 3. Function s(g) inverse to g(s), see Fig. 2. 

 
According to formula (7) the function g(s) is 

calculated immediately through the spectral line 
characteristics, and the spectral line shape should be 
naturally used. There is no problem with the overlapping 
spectra of various gases (with the absorption coefficients k1, 

k2, etc.). Indeed, it is enough to substitute k1 + k2 +... for 

k in Eq. (7). The generalization to the case of nonuniform 
medium is also evident, namely, k is replaced by the 
quantity ∫k(ω, l) dl, which is the integral of the absorption 
coefficient over the ray path. 

The first and the second problems mentioned in Sec. 1 
have been already answered. A small preface should be 
given before solving the third problem. 

The problem on the Dirichlet series of the type of 
Eq. (5), with the arbitrary function F(z) in the left–hand 
side was considered in detail in Refs. 18–20. The 
eigenvalues λn should be the simple roots of some suitable 

integral function L(λ) of the complex variable λ; the 
abscissas an are the contour integrals of F and L (see 
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Appendix B for details). In further calculations the 
expansion of the exponent appears 

 

exp ( – λ z) = ∑
n

 
 L(λ)
λ – λ n

 
1

L'(λ n)
 exp ( – λ n z) . (8) 

 
The choice of L(λ) is stringently regulated by the 

convergence condition of the Dirichlet series, by its 
convergence to its eigenfunction F(z), and by the speed of 
convergence. Incidentally, these requirements are much 
simpler if z > 0, i.e., the existence of L is beyond 
question. The problem of construction of the Dirichlet 
series is solved eventually by the expressions  

an = ⌡⌠
0

1

 

 L(s( g))
s( g) – λ n

 dg 
1

L(λ n)
 = ⌡⌠

0

∞

 
 

L(s) f(s) ds
(s – λ n)

 
1

L'(λ n)
 , (9) 

 

which are obtained as a result of the substitution of 
Eq. (8) into Eq. (1) (with λ = k(ω)) and of the 
subsequent use of Eq. (4) and then of Eq. (3). 

Equation (9) has a quite clear mathematical 
interpretation, i.e., the polynomials orthogonal with the 
weight f(s) must be used as L, λn are the roots of these 

polynomials, and Eqs. (9) appear to be the abscissas of 
the Gaussian quadrature formulas. The meaning of the 
optimization itself is clarified, namely, among all 
quadrature formulas the Gaussian formulas are precisely 
that ones which can be used for calculation of the 
integrand in the minimum number of points. The problem 
really returns to function (7), because f(s) = g′(s) by 
virtue of Eq. (3). 

Now the particular, however, pragmatically essential 
problem should be discussed, connected with the concrete 
construction of L(s) in Eq. (9). The well–known 
procedure (see, for example, Ref. 21) implies here the 
preliminary calculation of μn, the "moments" of the 

function f(s), and the relations (1)–(3) give rise to a 
chain 

 

μn = ⌡⌠
0

∞

 
 s

n f(s) ds = (δn0 + n ⌡⌠
0

∞

 
 (1 – g(s)) sn–1 ds = (–1)n P(n)(0). 

(10) 
 
Very often in the process of approximating the 

numerical information on P(z) (empirical one or resulting 
from line–by–line calculations) the argument of the 
fitted expression appears to be z to the fractional 
exponent. It is by no means accidentally. Thus, in the 
case of the Lorentzian line shape z . 1 quantity (1) is 

the function of z, and 1 – P ∝ z, if z n 1 (see an 
analysis in Ref. 22). The tendency to describe the 
behavior, for example, lnP for all z by this quantity to 
the power between 1 and 1/2 appears natural. 

However, for similar functions the chain (10) does 
not formally exist, and the mathematical cause of this 
fact is conditioned by occurring the branch points in the 
complex plane z that is discussed in Appendix D. This 
situation can be surely considered as indicative of the 
very essential "swinging of errors" (its source here is the 
approximation of P(z)), that was already mentioned in 
Sec. 1 in the preliminary discussion of the problem. It 
becomes understandable that all the procedure of 
constructing of μn should be fulfilled numerically, using 

Eqs. (2) and (3), and the corresponding definition from 

Eq. (10), even if some approximation of P(z) is available. 
The other way is to find suitable approximation for f(s). 

The question under discussion appears to be of 
principle to some extent, because the branch points and 
consequently the need of introducing the cut of the plane 
occur for any radical, among them the radicals appearing 
almost without exception for models of the absorption 
bands. 

It is worthwhile to note here new pragmatic 
advantages of the procedure (7), namely, it should 
radically decrease the volume of calculations necessary for 
construction of L in Eq. (9), especially in combination 
with the second expression (10). 

 
3. APPROXIMATE CONSTRUCTION OF THE 
EXPONENTIAL SERIES FOR FUNCTION (1) 
 
The general properties of the Dirichlet series will 

enable one to find rather simple (but, of course, 
approximate) solution of the problem (5) if they are 
combined with some peculiarities of Eq. (1). 

The molecular absorption coefficient 

κ(ω) = S ( , )j j j

j

k ω ω∑ Sjκj(ω, ωj) is the sum over the 

spectral lines with the line centers ωj, intensities Sj , and 

line shapes κj . Assume, that ∑
j
  includes the lines of all 

gases making contributions to the absorption at the 
frequency ω. 

The above–mentioned models of spectra were 
popular in the atmospheric optics at pre–laser and pre–
computer epoch (see, for example, Ref. 22). The 
computers, as it seemed to be at first, solved the problem 
by the direct line–by–line calculation. True, their own 
difficulties emerge, namely, the huge number of lines in 

∑
j
  and, what is the main thing, the problem of the line 

periphery. 
These difficulties can be bypassed, if to use the 

rather clear expedient of Ref. 23. Let us divide the lines 
into two groups at the given frequency ω (see Fig. 4) 

forming κ′ and ∼k in κ. The first one involves the lines 
immediately adjacent to ω (within the interval δω which 
is not necessarily coincident with Δω) with the Lorentzian 
line shape characteristic of the small frequency detunings 
⏐ω – ωj⏐ (αj is the line half–width, and the line center 

shift is involved in ωj) κ
(d)
j  = (αj/π)((ω – ωj)

2 + α2
j)

–2. 

 

 
 

FIG. 4. Spectral lines from the interval δ(ω) forming κ′, 

the rest ones form ∼k. 
 
The second group consists of the distant lines which 

contribute to the absorption at ω due to their wings. Two 
essential points should be noted in this connection. First, 
the parametric description is possible of all similar lines 
together, that, in fact, eliminates the necessity of  
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summation over a large number of such lines; second, ∼k 
appears to be a smooth function of ω and after substitution 

κ = κ′ + ∼k into Eq. (1), exp(–∼kl) can be factor out 

d (...)ω∫ , including then ∼k into λn from Eq. (5). 

As it turned out, the realization of this idea ensures 
the experimental accuracy of calculation (see the examples 
for atmospheric gases in Refs. 16 and 23). The pragmatic 
benefit is also evident, i.e., Eq. (1) becomes the problem of 
evaluating the transmission function of several spectral lines 
possessing the Lorentzian line shape. It is this function (1) 
(denoted as Pm with m being equal to the number of lines 

in the sum κ′ and with κ ⇒ κ′) which was considered in 
Refs. 22 and 24 (see, in addition, Ref. 25, where the idea of 
the approach applied goes back to Ref. 26), and the final 
expressions are commented below. 

Let  

A = ⌡⌠
ω'

ω′′
 
 ⎝
⎛

⎠
⎞1 – exp 

⎝
⎛

⎠
⎞ – 

l S α
π  

1

(ω – ω0)
2 + α2  dω (11) 

 

be the absorption function of a single line with intensity S, 
half–width α, and center ω0. Then 

P = 1 – A ,  S = (β2 – β1) ∑
j=1

m
 
 Sj Γj ,  

Γj = arctan ((ω′ – ωj) / αj) + arctan ((ω′′ – ωj) / αj) , 

β1 = arctan ((ω′– ω0)/ α) ,  β2= arctan((ω′′– ω0)/ αj) . (12) 
 

In sum (12) and expression (7) the absorption lines can 
belong to different gases, and Eq. (11) is simply generalized 
to the case of Doppler broadening. Note in addition that 
Eqs. (11) and (12) ensure the realistic asymptotic behavior 
of A, namely, the asymptotic case "rather weak absorption". 

The quantities α and ω0 should be considered as 

parameters, fitted in such a manner that the asymptotic 
behavior "rather strong absorption" is realized. It is well 
known22 that in this version quantity (11) is determined by 

the interval of integration (ω – ωj)
2 . α2, and the same 

rule is kept for the absorption function with several lines. 
The evident requirement appears in this case, namely, for ω 
removed far enough from ωj 
 

S α / (ω – ω0)
–2 ≅ ∑

j

 
 Sj αj / (ω – ωj)

–2 . (13) 

 

It is also clear that Eqs. (12) and (13) will give a correct 
result in the limiting case m = 1. 

The fact that Δω and δω (see Fig. 4) are not 
necessarily coincident ensures a pragmatic possibility to 
improve the approximation. 

Let us divide the interval Δω into subintervals Δωj in 

such a manner that only a single line with a center ωj falls 

into Δωj. The transmission function for m lines and for 

arbitrary Δω is denoted as Pm{Δωj}. It is obvious that 

Pm {Δ ω}

 

= ∑
j=1

m

 
 Pm {Δ ωj} (Δ ωj/Δ ω) . (14) 

Let us apply to Pm{Δωj} the expedient leading to Eqs. (11) 

and (12). Now Γj from Eq. (12) should be replaced by Γjj′  

with the index j′ numbering the lines and j numbering the 
subintervals in Eq. (14). Now there is no problem with the 
choice of ω in Eq. (13). 

The formula (14) describes, incidentally, one more 
correct asymptotic case, i.e., the situation when the line 
overlapping can be ignored. In this case Γjj′ = δjj' and 

Eqs. (11)–(14) convert into the asymptotic sum of the 
transmission functions of individual lines. 

The other important consequence of the analysis 
performed is the natural definition of the dimensionless 
"length" z which was introduced still in Eq. (1). It follows 
from Eq. (11) that it is meaningful to put  

 

z = (1/2 (β2 – β1)) α π ∑
j=1

m

 
 Sj Γj (15) 

 

with notation from Eq. (12). Of course, after division (14) 
the corresponding value (15) presents Pm{Δωj}. 

When Eq. (11) is represented by the Dirichlet series, 
Tchebycheff's polynomials should play the role of L(λ) (see 
Appendices B and C). The direct calculations show that the 
number of terms of series (5) does not exceed five even in 
the limit of large z. Of course, the values (15) are specific 
for every summand of Eq. (14), and the total number of 
summands appears to be large. This problem, in fact, is 
solved very easily. 

Actually, let zj be the value (15) for jth interval in 

Eq. (14), and Pm{Δωj} = ∑
n = 1

N
 a(j)

n exp(–λnzj) with the known 

a (j)n , λn, and integer N (the last is regulated by a desired 

accuracy of calculation). Further the quantity λ(j)zj, 

corresponding to ∼k, is added to λn zj (see the discussion of 

Fig. 4). Equation (15) is introduced for the entire interval and 
the values bj = zj/z are determined. The expansion (8) being 

applied to exp(–zλ(j)
r ) with λ(j)

r  = bj(λn + λ(j)) results in 

 

P

 

= ∑
n=1

N

 
 Dn exp ( – λ n z) ,  

 

Dn = ∑
j

 
 
∑
n=1

N

 
 (Δ ωj/Δ ω) ar

( j ) 
L(λ n)

(λ j
( j ) – λ n) L'(λ n)

 . (16) 

 
The possibility to retain the previous N in Eq. (16) follows 
simply from numerical estimates. 

The numerical analysis of the problem of the expansion 
of function (11) was performed by Nesmelova, and the 
peculiarities of the construction of L in Eq. (9) became 
clear after calculations made by Rodimova. The author 
expresses them his sincere appreciation. 

The work was supported by the Department of Energy 
of the USA (DOE) (Grant No. DE–FG02–91ER61128 
ARM Program). 

 
APPENDIX A 

 
It follows from Eq. (6) that it is sufficient to know 

the behavior of the integrand in the vicinity of ∼ω which is a 
root of the equation k(ω) = s, i.e., the expression 

k(ω) = s + k′(∼ω)(ω – ∼ω) + (1/2)k′′(∼ω)(ω ∼ω)2 + ... can be 
written. Substituting this expression into the algebraic 
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representation of the δ–function δ(x) = (1/π) lim
η→0

η(x2 + η2)–1 

and taking into account only first two terms of the expansion 

at k(∼ω) ≠ 0, we obtain (η k(∼ω) ⇒ ε) 
 

δ (x – k(ω)) = 
1
π limε→0

 
1

⎪k(ω∼)⎪
 

ε

(ω – ω∼)2 + ε2
 = 

1

⎪k(ω∼)⎪
 d(ω – ω∼). 

 
The contribution of these points to Eq. (7) is equal to  

(Δω)–1⏐k(∼ω)⏐–1. 
If however, k(ω) = 0 (this is the case when the straight 

line s = const in Fig. 1 is tangent to a maximum or 

minimum), then the use of the summand (1/2)k′′(∼ω)(ω – ∼ω)2 
in the expansion of k(ω) will be necessary, and the 
calculations according to the previous scenarium do not 
remove η; it remains in the denominator, and the integral (6) 
goes into infinity. 

One more attempt to remove the divergence in Eq. (6) 
(in a sense of generalized integration) consists in the 
asymptotic evaluation of integrals 

 

(1/2 π i) ⌡⌠
a–i ∞

a+i ∞

 
 d z (1/Δω) ⌡⌠

ω′

ω′′

   d ω exp ( – k(ω) z + s z) . 

 
Here the interchange of integrals is necessary to understand 

the role of points ∼ω. 
Now the substitution of the expansion of k(ω) in the 

case of k′(∼ω) ≠ 0 returns one to the situation already 
considered, i.e., after the standard asymptotic integration 

over ω the quantity 2⏐κ(∼ω)⏐z appears, and the occurring 

integral dz∫  is equal to 1/2. If k(∼ω) = 0, then the term 

∝(ω – ∼ω)2 will enter into the asymptotic estimate that leads 

to the factor ∼1/ z, and the integral dz∫  appears to be 

divergent. 
It is well known in the mathematical analysis (see, for 

example, Ref. 27) that the equality (for a function ϕ(ω, z)) 
 

⌡⌠
ω′

ω′′

   d ω ⌡⌠
a–i ∞

a+i ∞

 
 d z ϕ (ω, z) = ⌡⌠

a–i ∞

a+i ∞

 
 d z ⌡⌠

ω′

ω′′

   d ω ϕ (ω, z) 

 
exists only in the case of the uniform convergence of the 
integral with infinite limits in ω, i.e., when 
 

⎪⌡⌠
B

B'

  d z ϕ(ω, z)⎪ < ε . 

 
The last condition is accompanied by the standard comment, 
namely, for any ε > 0 such B0 can be found that the 

inequality written above will be true for all ω, if 
B > B′ > B0. 

The substitution of Eq. (1) into the second of Eqs. (2) 
or into Eq. (3) finds the pragmatic meaning when the 

transition to dω∫ dz∫  is possible, because only in this case 

dz∫  can be calculated explicity. In the version with 

Eqs. (1) and (2) the function ϕ(ω, z) = exp z(s – k(ω)), and 
the integral contained in the criterion of the uniform 
convergence is proportional to 

 
(2(s – k(ω)))–1 sin(s – k(ω)) (B – B′) . 
 
It is clear that (B – B′) can be replaced by infinity, and 
then the last expression converts into δ(s – k(ω)) which 
was studied earlier and which asserts, in fact, that the 
uniform convergence is absent. 

In the case of Eq. (3) the function 
ϕ(ω, z) = (1/z) × exp z(s – k(ω)), and for sufficiently large B 
and B′ the quantity 

 
(B(s – k(ω)))–1 sin(s – k(ω)) (B – B′)  
 
is present in the estimate of the uniform convergence. If 
s ≠ k(ω), the last expression will vanish at B ⇒ ∞; if s = k(ω), 
the value (B – B′)/B, independent on ω, will appear, that 

actually implies the uniform convergence of dz∫ . 

Note, in addition, that after the substitution of 
Eq. (1) into Eq. (3) and after interchanging the order of 
integration the well–known integral (see, for example, 
Ref. 28) occurs 

 

1
2πi ⌡⌠

a–i ∞

a+i ∞

 
  
d z
z  exp z (s – k(ω)) = 

⎩⎪
⎨
⎪⎧ 1,   s > k(ω)
(1/2),  s = k(ω)

 0 ,  s < k(ω)
 , 

 
that just leads to Eq. (7). 

  
APPENDIX B 

 
One of the assertions of the Dirichlet theory states 

that, if z > 0, then 
 

1
2π ir ! ⌡⌠

a–i ∞

a+i ∞

 
 d z 

F(z)
z  exp (s z) = ∑

n=1

n'
 
 (s – λ n)

r an , a > 0 

 
for integer r and λn′ < s < λn′ + 1. After the substitution of 

Eq. (1) for F the calculation of the integral in the last 
expression repeats literally the derivation of Eq. (7), 

 

1
Δ ω ⌡⌠

k(ω) ≤ s

 
  u(ω) (s – k(ω))r d ω = ∑

n=1

n'
 
 (s – λ n) an , 

s
 
∈ [ω′, ω′′] . 

 
The mathematical interpretation of similar relations is 

quite obvious, namely, for g(s), the properties of which are 
demonstrated in Fig. 2, the function L(λ) must be padded 
with zeros in the limited interval dense everywhere, and a 
sequence is chosen from them of the roots of the 
polynomials which are orthogonal with the weight f(s). 

Let us apply these results to F(z) = In(z), the 

modified Bessel function occurring in Eq. (11) (see, for 
example, Ref. 22). 

To calculate the integral arisen let us use the contour 
shown in Fig. 5, including the possibility to bypass the 
point z = 0 along the half–circle with the radius ρ. It is 
clear that for the available integrand the integral over such 
a contour is equal to zero. For sufficiently large T in the 
intervals I–II and III–IV the function In is replaced by its 
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asymptotic expression ∼(ξ ± i∞) exp(±(ξ + iT)), and the 
subsequent modulus evaluation results in 

 

lim
T→∞

 
1

T1/2 ⌡⌠
0

a/T

 
 

d y
( y2 + 1)3/4 = 0 . 

 

The integral under study takes the form  
 

i n–1

2π  ⌡⌠
–∞

∞

 
  
d y
y  Jn( y)(cos sy+i sin sy) =  

 

 = 
⎩
⎨
⎧0,  s ≥ 1,
(– 1)n(1/πn) sin (n arcsin s), s ≤ 1, r – even,
(– 1)(n+1)/2 (1/πn) cos (n arcsin s), s ≤ 1, n – odd ,

 

 
where z = i y, In(iy) = i nJn(y), and Jn is the standard 

Bessel function. The half–circle is needed only at n = 0 and 
in the case of presence of cos–function in formulas; 
however, it does not affect the final result. 

The last formula is the excellent illustration of the 
previous general derivation, namely, s changes continuously, 
and the transition n → ∞ in Eq. (5) implies the transition to 
the integration. All problems of the Dirichlet series come 
down to the existence of the integral in the sense of 
Riemann and the positive answer in the case under 
consideration is almost obvious. 

Thus, let us divide the interval [0, 1] into small parts Δλ 
(with the index q) and putting all λn = λq in each part, we 

obtain the expression exp(-  z)q n

q n q

a

∈

λ∑ ∑ . It is clear 

that +1( ) - ( )n q q

n q

a H H

∈

= λ λ∑ ~= (∂H/∂s)Δλ, with H being 

the value of the last integral. It can be seen that the sum over 
n comes into the integral resulting in the corresponding 
integral representation for In. 

 

 
 

FIG. 5. T ⇒ ∞ and ρ ⇒ 0. 

 
The only condition for L(λ) implies that it has to have 

the adequately placed roots. The last expression, in fact, 
asserts that Tchebycheff's polynomials should be chosen as 
L (see their properties in Ref. 29, for example). This solves 
the problem on the choice of L, when the approximation 
"isolated line" is used in Eq. (1). 

 

APPENDIX C 
 

After simple replacements of variables Eq. (11) will 
take the form 
 

W ≡ Δ ω A = ⌡⌠
–π

π

 
 (1 – exp [– z (1 + cos ψ)]) 

d ψ
1 + cos ψ , 

 
if the interval Δω is sufficiently large and, as a consequence, 
in Eqs. (12) and (15) β1, 2 = å(π/2) are assumed. Of 

course, the last integral is well–known: 
K = 2π(I0(z) + I1(z)) with modified Bessel functions. 

Choosing Tchebycheff's polynomials as L(λ), we can 
write 

 

K = 
2 π
N  ∑

n=1

N
 

 

1 – exp (– z (1 + cos ψn))

1 + cos ψn
 

 
with ψn = (2n – 1)/2N. Consequently, in constructing 

Eq. (16) λn = 1/an = 1 + cosψn. 

 
APPENDIX D 

 
Let us remind briefly the procedure of the proof of 

Eq. (10) in accordance with the theory of the Laplace 
transform. 

After substitution of Eq. (2) into the definition of μn 

from Eq. (10), replacing the variable z = a + iy and going 
to the limit a ⇒ 0, we obtain 

 

μn = ⌡⌠
–∞

∞

 
 ds sn ⌡⌠

–∞

∞

 
 dy P(i y) exp (i y s) . 

 

The fact that the inverse Laplace transform gives 
f(s) = 0 at s < 0 has been already used. Therefore, the 
integration over s is formally performed from –∞. 
However, the main point here is that a ⇒ 0 is possible 
only for the function P(z) regular at the point z = 0 that 
is assured by the initial Eq. (1). The interchange of the 
order of integration in the last expression is evidently 

possible; the integral ∫ds(...) results in i–nδ(n)(y), and the 
properties of the δ–function enable one to obtain the last 
expression of the chain (10). 

However, when we empirically approximate P(z) by 
the functions with fraction powers of z, P(z) is no longer 
regular in the zero point. This point should be removed 
making the cut of the plane along the negative part of the 
real axis, and the previous simplifications of μn become 

impossible. It is understandable that the cut of the plane, 
regardless of the point of its beginning, essentially 
regulates the analytical properties of P(z) and f(s), and, 
consequently, the relations between them. 

Now some comments should be made about the 
feasibility to use the approximations f(s) in Eq. (10). 
Those f(s) which correspond to Eq. (3) and Fig. 2 can be 
fitted, for example, by the expressions of the type 

 

f(s) = (1/Γ((ν + 1)/γ)) sν exp (– h sν) 
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with the parameters h, ν, and γ. (The gamma–function 
appears as a normalization factor, see Eq. (10) for n = 0.) 
Furthermore, Eq. (2) with this f(s) should be written and 
the parameters should be found using a suitable empirical or 
model expression for P(z). 
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