
154   Atmos. Oceanic Opt.  /March  1994/  Vol. 7,  No. 3 S.Yu. Popov and G.A. Titov 
 

0235-6880/94/03  154-04  $02.00  © 1994 Institute of Atmospheric Optics 
 

MEAN FLUXES OF SOLAR RADIATION IN 

STRATUS CLOUDS WITH RANDOM UPPER BOUNDARY 

 

S.Yu. Popov and G.A. Titov 
 

Institute of Atmospheric Optics, 
Siberian Branch of the Russian Academy of Sciences, Tomsk 

Received November 22, 1993 
 

A model of continuous stratus clouds with stochastically inhomogeneous upper 
boundary is constructed based on the algorithm of simulating a Gaussian random 
field. This model considers such effects as optically thin regions, radiative 
interaction among individual billows, and mutual shadowing. The mean radiant 
fluxes are computed within the framework of the method of statistical simulation of 
cloud and radiation fields. Differences between the mean fluxes of solar radiation 
in continuous stratus clouds with irregular upper boundary and in plane cloud layer 
are maximum at small solar zenith angles and may reach a few tens of per cents. 

 
Real clouds are typically characterized by extreme 

spatial inhomogeneity of their optical properties resulting 
from their complex irregular geometry and macroscale 
fluctuations of water content, phase composition, and 
water droplet (ice crystal) size spectrum. Natural 
inhomogeneities occur simultaneously, and the geometric 
thickness and cloud extinction coefficient may vary 
considerably.1 Visual observations of dark and light 
fragments at the lower boundary of continuous cloudiness 
give no way for tackling unambiguously the question 
about the contribution of macroscale fluctuations in the 
cloud optical parameters and cloud stochastic geometry to 
the formation of these fragments. In other words, a light 
fragment cannot be uniquely identified as a zone with a 
decreased value of the cloud extinction coefficient (or its 
geometric thickness). Reliable data with high spatial 
resolution on the vertical structure and statistical 
correlation among the cloud optical and geometric 
parameters are practically lacking now, thereby making 
the construction of adequate models of clouds difficult.  

Since the radiative regime and brightness fields 
nonlinearly depend upon the cloud geometry and cloud 
optical characteristics, it is impossible to evaluate 
correctly the effect of fluctuating cloud optical 
characteristics on radiation field modulated by these 
fluctuations, using some mean parameters, e. g., mean 
optical thickness, in calculations. A number of models are 
available now considering the effect of stochastic 
geometric structure of cumulus cloud field on radiative 
regime and brightness field of the system atmosphere–
underlying surface (see, e.g., Refs. 2, 3, and 4). As for 
continuous stratiform clouds, the model of a plane–
parallel homogeneous layer is most widely used as before. 
For example, the model of a plane–parallel layer of 
vertically homogeneous turbid medium with horizontal 
continuous periodic variations of the scattering and 
absorption coefficients was used in Refs. 5 and 6 to study 
the effect of spatial inhomogeneity of cloud optical 
characteristics on radiation processes in the atmosphere. 

The present paper uses the model developed in 
Ref. 2. This model is based on the algorithm of 
simulating a uniform isotropic Gaussian field7,8 and 
considers the stochastic geometry of the upper boundary 
of stratus clouds with deterministic optical 
characteristics. The method of statistical simulation of  

cloud and radiation fields9 is used for studying the 
dependence of the mean fluxes of visible solar radiation 
on the parameters describing the random geometry of the 
cloud upper boundary. 

 
1. MODEL OF STRATUS CLOUDS WITH 

RANDOM UPPER BOUNDARY 

 
The idea of using the Gaussian random surfaces for 

simulation of cloud fields with random geometry was first 
suggested in Ref. 10. For a detailed mathematical 
description of the algorithm of constructing such surfaces 
and adjusting the model input parameters to the 
experimentally measured quantities, see Ref. 2. For clarity 
and integrity of presentation, we only briefly describe the 
model here. Let as assume that the cloudiness is bounded 
from bottom by the plane z = H

0
, and its upper boundary 

z = w(x, y) is defined as 
 

w(x,
 
y) = H0 

+ max(υ(x, y) + H, 0), (1) 

 
where H is the mean cloud layer thickness, υ(x, y) is the 
uniform Gaussian field with zero mean, correlation function 
K(x, y), and variance σ2 = K(0, 0). The model is uniquely 
determined by the parameters H, σ, and correlation function 
K(x, y). The realizations of field (1) are constructed 
numerically using a modification of the method of spectrum 
randomization borrowed from Ref. 7, where it was used to 
model isotropic field, since at the first stage of our study it 
makes sense to restrict ourselves to an examination of isotropic 
cloudiness. The correlation function for this field is of the 
form K(x, y) = K(r) = σ2J

0
(ρr), where r2 = x2 + y2, and J

0
 is 

the Bessel function. In this case the model formula is written as 
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1
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where ρ, ω
i
 are the polar coordinates of spectrum points; α

i
, 

β
i
 are independent random variables being uniformly 

distributed on the interval [0, 1]; and, I = 10 is the number 
of segments into which the spectral space is divided. This  
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model was employed in Ref. 2 to simulate cumulus cloud 
fields. Obviously, when σ ≤ (1/3)H, field (1) can be used 
as a mathematical model of stratus clouds with random 
upper boundary. It is reasonable to characterize the mean 
vertical and horizontal extents of inhomogeneities with 
the rms deviation σ and correlation length r

c
 g 1.75/ρ, 

respectively. 
 

2. NUMERICAL RESULTS 

 

As has been noted above, radiation field nonlinearly 
depends on cloud optical and geometric characteristics, 
and the random geometry of stratus cloud upper boundary 
may have significant effect on solar radiative transfer. Let 
us consider factors governing the mean radiation fluxes. 
In contrast to a plane–parallel cloud layer, irregular 
upper boundary model has (Fig. 1): 

1) on the average, optically thinner regions which, 
unless shadowed, transmit larger amount of direct 
radiation and, due to strongly forward–peaked scattering 
phase function, larger amount of scattered radiation; 

2) on the average, optically thicker regions 
increasing the cloud albedo; 

3) multiple re–reflections among cloud billows 
increasing the albedo. 

 

 
 
FIG. 1. Cross section through the cloudiness, constructed 
for model (1), by the vertical plane y = 0, and 
realizations of photon trajectories. 
 

These are the main physical effects caused by the 
random geometry of cloud layer upper boundary and 
governing the radiative transfer. The last effect is 
determined by the solid angle within which one billow is 
seen from each point of the other billow; the larger is the 
angle, the higher is the probability for a photon to 
undergo additional scattering in nearby cloud billows. 
Thus, the larger is the ratio of the mean vertical to the 
mean horizontal extent of inhomogeneities, the stronger is 
the radiation interaction among individual cloud billows. 

Below we give the results computed for the mean 
albedo <R> as well as the mean direct <S> and diffuse 
<Q> transmitted radiation, with angular brackets 
denoting the ensemble averages over cloud field 
realizations. Clouds normally were assumed purely 
scattering media, the scattering phase function was for 
Deirmendjian's C1 cloud,11 and the wavelength was 
λ = 0.69 μm. Scattering beyond the clouds and reflection 
from the underlying surface were not considered. 
Obviously, the limiting value σ = 0 refers to the model of  

a layer with plane–parallel boundaries. We denote by 
δR = (<R(0)> – <R(σ)>)/<R(σ)> the relative deviation 
of the mean albedo <R(σ)> from the mean albedo <R(0)> 
of a plane–parallel cloud layer with mean thickness H. 
The same notation is used for the scattered transmitted 
radiation. The relative error in radiant flux computations 
was within 1%. 

The larger is the variance σ2, the smaller is the 
minimum geometric thickness H

min
 of cloud layer, and 

hence smaller is the optical thickness of the region 
localized around H

min
. Due to strong forward peaking of 

the cloud scattering phase function, major portion of 
radiation interacting with this region will pass through 
the cloud layer. Therefore, the mean albedo will decrease 
while the mean transmission increase, in accordance with 
the results of computations shown in Fig. 2. Here and 
below ξ≈ is the solar zenith angle, and Σ is the extinction 
coefficient. As the correlation length decreases, an 
average "period" of fluctuations and the fraction of 
optically thin regions, on the average, increase. This is 

the reason for <R(σ)> to decrease while for <Q
s
(σ)> to 

increase with r
c
 decrease. This variable behavior of 

<R(σ)> and <Q
s
(σ)> attendant to variations in horizontal 

extents of inhomogeneities is in qualitative agreement 
with the results of Ref. 5 obtained for a plane–parallel 
cloud layer with horizontally variable coefficients of layer 
scattering and absorption. 

 

 
 

 
 

FIG. 2. The dependence of <R> (a) and <Q
s
> (b) on the 

dimensionless parameter σ/H at ξ≈ = 0°, Σ = 30 km–1, and 
H = 0.5 km for different correlation lengths r

c
 = 0.233 (1), 

0.117 (2), and 0.05 km (3). Curve 4 is for a plane layer. 
 

Obviously, as Σ → 0 and Σ → $, the mean fluxes 
become insensitive to the fluctuations in the upper boundary 
of cloud layer, with δR and δQ

s
 vanishing (Fig. 3). The 

mean albedo depends most strongly on the variance of the 
upper boundary at intermediate optical thickness  
<τ> ∼ 20–30, when δR attains its maximum. When 
Σ ≤ 120 km–1, ⏐δQ

s
⏐ monotonically increases with 

increasing Σ up to a maximum of ~ 30%. The last fact is of 
prime importance when reflection from the underlying 
surface does not follow the Lambert law and depends 
strongly on the angular structure of an incident light.  
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FIG. 3. The dependence of <R> (a) and <Q
s
> (b) on the 

extinction coefficient at ξ
À
 = 0°, H = 0.5 km , 

r
c
 = 0.117 km , and σ/H = 0 (1) and 1/3 (2). Dashed 

curves are for δR and δQ
s
 at σ/H = 1/3. 

 
At larger solar zenith angle optically thinner regions 

are shadowed by surrounding cloud billows, thereby 
smoothing out the difference between the fluxes computed 
for a plane–parallel cloud layer and a layer with irregular 
upper boundary (Fig. 4). At ξ≈ = 0°, δR and δQ

s
 are as 

great as 8–10%. At solar zenith angles larger than 60° 
these deviations are within the relative computational 
error (≤ 1%) and may be neglected. 

 

 
 

 
 

FIG. 4. Mean fluxes for Σ = 30 km–1, H = 0.5 km , 
r
c
 = 0.117 km , and different solar zenith angles ξ≈ = 0 

(1), 30 (2), and 60° (3). 

As is well known a solution of the radiative transfer 
equation for a horizontally homogeneous plane layer of 
turbid medium off the absorption bands of atmospheric 
gases is invariant against the optical thickness. To 
preserve the invariance of cloud layers and photon 
trajectories for the case of a cloud layer with random 
upper boundary, the following parameters must be kept 
unchanged: 

– mean optical thickness <τ> = ΣH , 
– ratio of the mean vertical to mean horizontal 

extent σ/r
c
 , 

– ratio σ/H . 
With these parameters fixed, the mean fluxes 

practically coincide and differ by no more than the relative 
computational error (Fig. 5). 

 
 

FIG. 5. Mean fluxes <Q
s
> (1, 2) and <R> (3, 4) as 

functions of the dimensionless parameter σ/H at ξ≈ = 0°: 
Σ = 60 km–1, H = 0.25 km , and r

c
 = 0.117 km (1 and 3); 

Σ = 30 km–1, H = 0.5 km , and r
c
 = 0.233 km (2 and 4). 

 

The requirements for the accuracy of solar flux 
computations become more stringent ; therefore, the 
stochastic geometry of stratus cloud top must be considered 
when developing the models of radiation clouds as part of 
numerical models of the global circulation of the 
atmosphere. In this regard we note that the mean fluxes are 
most sensitive to cloud top fluctuations at small solar zenith 
angles, when a considerable portion of radiation may pass 
through optically thin regions located around a minimum 
optical thickness of stratus clouds.  
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